期刊文献+

基于时态约束的Apriori改进算法的实现 被引量:3

Realization of the Improved Algorithm Based on Temporal Constraint
下载PDF
导出
摘要 时态数据反映了事物发生发展的过程,对其进行数据挖掘是非常有意义的。而数据库中含有海量数据,挖掘出贴近现实意义的时态关联规则是很困难的。时态关联规则挖掘算法中对聚类思想的引用和对发现时态频繁项集的Apriori算法进行改进是关键的两步。本文讨论了Apriori算法的缺点和改进,提出了基于时态约束的关联规则挖掘的算法解决办法,并通过Visual Basic软件,以超市前端收款机所收集的信息为数据,对改进算法进行了测试验证,为算法的应用提供了依据。 Temporal data reflects the process of the occurrence and development of things. It is very meaningful for data digging out. While the database contains a lot of data, digging out the temporal association rules with realistic significance is very difficult. Reference to the clustering and improvement of the temporal frequent itemsets Apriori algorithm are two key steps of algorithm for digging out temporal association rules. This paper discusses the shortcomings of Apriori algorithm and its improvement. The solution of algorithm for digging out association rules based on temporal constraint is put forward. And through the Visual Basic software, the date collected by supermarket front cash register, test the improved algorithm, provide a basis for the application of the algorithm.
作者 董研
机构地区 渤海大学
出处 《自动化技术与应用》 2015年第1期42-46,共5页 Techniques of Automation and Applications
基金 2014年度辽宁省社会科学规划基金项目(编号:L14BTJ002)
关键词 APRIORI算法 关联规则挖掘 时态约束 超市数据挖掘 Apriori algorithm association rule digging out temporal constraints supermarket data digging out
  • 相关文献

参考文献5

二级参考文献27

  • 1王创新.关联规则提取中对Apriori算法的一种改进[J].计算机工程与应用,2004,40(34):183-185. 被引量:32
  • 2胡吉明,鲜学丰.挖掘关联规则中Apriori算法的研究与改进[J].计算机技术与发展,2006,16(4):99-101. 被引量:59
  • 3R. Agrawal, T. Imielinski, A. Swami. Mining association rules between sets of items in large databases. ACM SIGMOD Int'l Conf. Management of Data, Washington, D. C., 1993.
  • 4Han J, Kamber. MData Mining: Concepts and Techniques.Beijing: High Education Press, 2001.
  • 5B. Goethals. Survey of frequent pattern mining. Helsinki Institute for Information Technology, Technical Report, 2003.
  • 6R. Agrawal, R. Srikant. Fast algorithm for mining association rules. The 20th Int'l Conf. VLDB, Santiago, Chile, 1994.
  • 7M. Houtsma, A. Swami. Set-oriented mining for association rules in relational databases. In: Yu P., Chen A, eds. Proc. Int'l Conf. Data Engineering. Los Alamitos, CA: IEEE Computer Society Press, 1995. 25~33.
  • 8A. Savasere, E. Omiecinski, S. Navathe. An efficient algorithm for mining association rules. The 21st Int' l Conf. VLDB, Zurich,Switzerland, 1995.
  • 9J. Han, Y. Fu. Discovery of multiple-level association rules from large databases. The 21st Int'l Conf. VLDB, Zurich,Switzerland, 1995.
  • 10R. Bayardo. Efficiently mining long patterns from databases. In:L. M. Haas, A. Tiwary, eds. Proc. ACM SIGMOD Int'l Conf.Management of Data. New York: ACM Press, 1998. 85~93.

共引文献73

同被引文献16

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部