期刊文献+

基于双向联想记忆网络的航空雷达在线入侵诊断方法研究 被引量:1

Aviation Radar Online Invasive Diagnosis Method Based on BAM Network
下载PDF
导出
摘要 针对传统的航空雷达网络面临的入侵威胁,以及雷达网络存在的入侵诊断检测效率较低,数据匹配速度较慢等问题,提出了一种基于双向联想记忆网络的航空雷达在线入侵诊断方法,构建航空雷达在线入侵诊断模型,对航空雷达网络中的外部数据进行预处理,并获取数据特征以及数据特征的可辨识属性矩阵和决策辨识函数,计算测试参数集的所有特征向量,从而使入侵检测算子的匹配量减少,以此提升数据匹配效率,实现对外部入侵数据的过滤检测,从而对雷达数据网络进行在线监控,有效抵御外部异常数据的入侵,保证了航空雷达网络的安全性;仿真结果表明文章方法有效提高了航空雷达网络的在线数据检测匹配速度,诊断准确率达到93.3%,且对航空雷达的入侵诊断检测效率、误报率、漏报率等方面都有明显改善。 In view of the traditional aviation radar network invasion threat,and intrusion diagnostic test of radar network low efficiency,data matching speed is slow,this paper proposes an aviation radar online invasive diagnosis method based on BAM network,build invasion diagnosis model of aviation radar online,preprocessing the external data in aviation radar network,and obtain data features and characteristics of discernibility matrix and decision attribute recognition function,all the characteristic vector calculation test parameter set,so that reduce the amount of matching the intrusion detection operator,to enhance the efficiency of data matching,external intrusion data filtering detection,thus for on-line monitoring of the radar data network,effectively resist the invasion of external abnormal data,make sure the safety of aviation radar network.The simulation results show that the method effectively improves the matching speed aviation radar network data on line detection,diagnosis accuracy rate reached 93.3 %,and the invasion of the aviation radar detection diagnosis efficiency,the rate of false alarm,non-response rates etc have been improved significantly.
作者 吴华 王海顺
出处 《计算机测量与控制》 2015年第1期57-59,63,共4页 Computer Measurement &Control
关键词 BAM网络 航空雷达 在线入侵诊断 BAM network aviation radar online intrusion diagnosis
  • 相关文献

参考文献6

二级参考文献34

  • 1汤霞清,张景浩,毛云.基于C^(++) Builder和CAN总线的坦克火控系统状态监测研究[J].火力与指挥控制,2006,31(S1):82-84. 被引量:1
  • 2高庆,李田,魏震生.层次分析在故障诊断中的应用[J].火力与指挥控制,2006,31(2):59-61. 被引量:7
  • 3苏宏升,李群湛.概念格在变压器故障诊断中的应用研究[J].高电压技术,2006,32(2):12-14. 被引量:6
  • 4[1]Eskin E.Anomaly Detection over Noisy Data Using Learned Probability Distributions. In Proc. 17th International Conf. on Machine Learning,2000:255-262
  • 5[2]Dagupta D,Gonzalez F.Information Assuarance in Computer Networks.Chapter An Intelligent Decision Support System for Intrusion Detection and Response,2001:1 - 14
  • 6[3]Forrest S,Perelson A,Allen L,et al.Self-nonself Discrimination in a Computer. In Proc. IEEE Symp. on Research in Security and Privacy,1994
  • 7[4]Kephart J.A Biologically Inspired Immune System for Computers.In:Proceedings of Artificial Life, 1994:130-139
  • 8[5]Kim J,Bentley P J.An Evaluation of Negative Selection in an Artificial Immune System for Network Intrusion Detection. In:Proceedings of the Genetic and Evolutionary Computation Conference,2001 :1330-1337
  • 9Bart Kosko, Bidirectional Associative Memories[J]. IEEE Trans, 1988, 18: 49-60.
  • 10Aickelin U,Green Smith J,Twycross J.Immune system approaches to intrusion detection-a review[C].Catania,Italy:Proceedings International Conference on Artificial Immune System,2004.316-329.

共引文献21

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部