期刊文献+

基于弹性阻抗的储层物性参数预测方法 被引量:46

Petrophysical property inversion of reservoirs based on elastic impedance
下载PDF
导出
摘要 储层物性参数是储层描述的重要参数,常规的基于贝叶斯理论的储层物性参数反演方法大多是通过反演获得的弹性参数进一步转换而获得物性参数,本文提出一种基于弹性阻抗数据预测储层物性参数的反演方法.该方法主要通过建立可以表征弹性阻抗与储层物性参数之间关系的统计岩石物理模型,联合蒙特卡罗仿真模拟技术,在贝叶斯理论框架的指导下,应用期望最大化算法估计物性参数的后验概率分布,最终实现储层物性参数反演.经过模型测试和实际资料的处理,其结果表明本文提出的方法具有预测精度高,稳定性强,横向连续性好等优点. Reservoir parameters are important to petrophysical parameter inversion method based of elastic parameters and their transform. This reservoir description. The conventional reservoir on Bayesian theory are mostly based on inversion study proposes an inversion method of reservoir petrophysical parameters based on elastic impedance data. This method establishes the statistical rock physics model to characterize the relationship between elastic impedance and reservoir petrophysical parameters, combines the Monte Carlo simulation techniques and applies the expectation maximization algorithm to estimate petrophysical parameter posterior probability distribution in the framework of Bayesian theory, and then ultimately finishes reservoir parameter inversion. The feasibility of the method is verified by the model test and actual seismic data. The results indicate that the proposed method can improve the prediction accuracy and stability, meanwhile has a better lateral continuity.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2014年第12期4132-4140,共9页 Chinese Journal of Geophysics
基金 国家重点基础研究发展计划(973计划)项目(2013CB228604) 国家油气重大专项(2011ZX05030-004-002) 中国博士后科学基金 山东省博士后创新基金 中石化重点实验室基金联合资助
关键词 弹性阻抗 储层物性参数 贝叶斯理论 EM算法 统计性岩石物理模型 Elastic impedance Reservoir petrophysical Statistical rock physics model parameters Bayesian theory EM algorithm
  • 相关文献

参考文献6

二级参考文献23

  • 1焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1995..
  • 2印兴耀,石油大学学报,1994年,18卷,5期,20页
  • 3印兴耀,人工神经网络理论及应用最新进展,1994年
  • 4Pao Y H,Adaptive Pattern Recognition and Neural Networks,1989年
  • 5黄秀轩 朱学峰.改进的自适应遗传算法.中国学术期刊文摘,1998,14(11):1415-1417.
  • 6Spikes K, Mukerji T, Dvorkin J, et al. Probabilistic seismic inversion based on rock-physics models [J]. Geophysics, 2007, 72(5):R87-R97.
  • 7Mukerji T, Avseth P, Mavko G, et al. Statistical rock physics: Combining rock physics, information theory and geostatistics to reduce uncertainty in seismic reservoir characterizati6n [J ]. The Leading Edge, 2001, 20(3)..313-319.
  • 8Gunning J, Michael E G. Detection of reservoir quality using Bayesian seismic inversion[J]. Geophysics, 2007, 72(3):R37-R49.
  • 9UlvmoenM, Omre H. Improved resolution in bayesian lithology/fluid inversion from prestack seismic data and ,well observations. Partl-Methodology[J].Geophysics, 2010, 75(2):R21-R35.
  • 10Grana D, Rossa E D. Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion [J]. Geophysics, 2010, 75(3) :O21-O37.

共引文献110

同被引文献674

引证文献46

二级引证文献290

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部