期刊文献+

基于FHT似然比检验的CRN协作频谱感知方案

Research of Cooperative Spectrum Sensing Scheme in CRN Based on FHT Likelihood Ratio Test
下载PDF
导出
摘要 针对认知无线电网络中由于噪声功率不确定性而影响频谱检测性能的问题,提出了一种基于模糊似然比检验的协作频谱检测方法。首先,将每个次用户(SU)中的噪声不确定性均建模为模糊假设检验(FHT);然后,在FHT上利用似然比检验构建带有阈值的模糊能量检测器,该阈值依赖于噪声功率不确定性边界;最后,在融合中心结合SU的局部硬决策并做出最终决策,从而检测主用户是否存在。通过Monte Carlo模拟受试者ROC曲线及检测概率/SNR曲线验证了本文方法的有效性,仿真结果表明,相比其他几种较新的能量检测器,本文方法获得了更好的检测性能。 To solve the problem of spectrum sensing in the noise power uncertainty environments, a cooperative spectrum sensing scheme using fuzzy set theory to mitigate the noise power uncertainty is proposed. Firstly, the noise power uncertainty in each Sec- ondary User (SU) is modeled as a Fuzzy Hypothesis Test (FHT). Then the likelihood ratio test on the FHT is deployed to derive a fuzzy energy detector with a threshold that depends on the noise power uncertainty bound. Finally, the fusion center combines the received local hard decisions from the SUs and makes a final decision to detect the absence/presence of a primary user (PU). The effectiveness of proposed method is verified by simulating ROC curve and detection probaBility/SNR curve using Monte Carlo. Sim- ulation results show that the proposed method has better detecting performance than several other advanced energy detectors.
出处 《电视技术》 北大核心 2015年第3期101-106,共6页 Video Engineering
基金 国家自然科学基金项目(61170035) 江苏省自然科学基金项目(BK2011702)
关键词 模糊似然比检验 认知无线电网络 模糊能量检测器 主用户 协作频谱感知 fuzzy likelihood ratio test cognitive radio networks fuzzy energy detector primary user cooperative spectrum sensing
  • 相关文献

参考文献15

二级参考文献122

  • 1廖楚林,陈劼,唐友喜,李少谦.认知无线电中的并行频谱分配算法[J].电子与信息学报,2007,29(7):1608-1611. 被引量:58
  • 2Yucek T and Arslan H. A survey of spectrum sensing algorithms for cognitive radio applications [J]. IEEE Communications Surveys & Tutorials, 2009, 11(1): 116-130.
  • 3Akyildiz I F, Lee W, and Vuran M, et al.. A survey on spectrum management in cognitive radio networks [J]. IEEE Communications Magazine, 2008, 46(4): 40-48.
  • 4Haykin S, Thomson D J, and Reed J H. Spectrum sensing for cognitive radio [J]. Proceedings of the IEEE, 2009, 97(5): 849-877.
  • 5Ma J, Zhao G D, and Li Y for cooperative spectrum networks [J]. IEEE Soft combination and detection sensing in cognitive radio Transactions on Wireless Communications, 2008, 7(11): 4502-4507.
  • 6Hossain E and Bhargava V K. Cognitive Wireless Communication Networks [M]. New York: Springer Science Business Media, 2007: 118-119.
  • 7Digham F, Alouini M S, and Simon M K. On the energy detection of unknown signals over fading channels [J] IEEE Transactions on Communications, 2007, 55(1) 21-24.
  • 8Ghasemi A and Sousa E S. Spectrum sensing in cognitive radio network: the cooperation-processing tradeoff [J]. Wireless Communications and Mobile Computing, 2007, 7(9): 1049-1060.
  • 9Shen J, Liu S, and Wang Y, et al.. Robust energy detection in cognitive radio [J]. IET Communications, 2009, 3(6): 1016-1023.
  • 10Joshi D R, Popescu D C, and Dobre O A. Adaptive spectrum sensing with noise variance estimation for dynamic cognitive radio systems [C]. 44th Annual Conference on Information Sciences and Systems. Princeton, NJ, Mar. 17-19, 2010: 1-5.

共引文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部