期刊文献+

基于偏正态随机效应模型的信度保费 被引量:5

Credibility Premium Based on Skew-Normal Random Effect Model
下载PDF
导出
摘要 信度模型是非寿险经验费率厘定的主要方法。传统的Buhlmann-Straub信度模型可以表示为随机截距模型,并假设随机效应服从正态分布。但在实际的保险损失数据中,部分个体风险的损失可能远远高于总体平均水平,从而使得不同个体风险之间的风险差异呈现右偏特征。在这种情况下,Buhlmann-Straub模型可能低估高风险的信度保费。本文在随机截距模型中假设随机效应服从偏正态分布,求得了偏正态随机效应假设下的信度保费。可以证明,Buhlmann-Straub信度保费是其特例。模拟分析和实证研究的结果都表明,偏正态随机效应假设下的信度模型可以更好地预测高风险的信度保费,从而改进传统信度模型的保费估计结果。 Credibility models are main methods of experience ratemaking for non-life insurance. Classical Buhlmann- Straub credibility model can be expressed as a random intercept model. Random intercept model assumes that the random effect is normally distributed. In insurance reality, some individual risks may cause much higher losses than the population average. In this case, random effect is right-skewed and Buhlmann-Straub model may under-estimate the credibility premium with higher risks. The paper assumes that the random effect is skew-normally distributed in random intercept model, and a new credibility premium may be calculated. It can be shown that Buhlmann-Straub model is included in this new model as a special ease. Simulation study and case study show that the new credibility model improves the credibility premium of higher risks.
出处 《统计研究》 CSSCI 北大核心 2015年第1期73-78,共6页 Statistical Research
基金 教育部重点研究基地重大项目"随机效应模型及其在非寿险风险管理中的应用"(12JJD790025) 国家自然科学基金项目"考虑风险相依的非寿险精算模型研究"(71171193) 中国人保财险灾害研究基金项目"车型分类及定价分析"(2013B07)资助
关键词 随机效应模型 信度保费 偏正态分布 非寿险 Random Effect Model Credibility Premium Skew-normal Distribution Non-life Insurance
  • 相关文献

参考文献10

  • 1孟生旺.非寿险分类费率模型及其参数估计[J].数理统计与管理,2007,26(4):584-588. 被引量:9
  • 2S. A. Klugman, H. H. Panjer, G. E. Willmot. Loss models: From data to decisions [M]. New Jersey: John Wiley & Sons, Inc. , 2012.
  • 3E. W. Frees. Regression modeling with actuarial and financial application. Cambridge, New York: Cambridge University Press; 2010.
  • 4R. Kaas, M. Goovaerts, J. Dhaene, et al. Modern actuarial risk thoery using R[M]. Berlin : Springer, 2008.
  • 5A. Azzalini. A class of distributions which includes the normal ones [J]. Scandinavian Journal of Statistics, 1985, 12(2) :171 - 178.
  • 6R. B. Arellano-Valle, H. Bolfarine, V. H. Lachos. Skew-normal linear mixed models [J]. Journal of Data Science, 2005, (3) : 415 -438.
  • 7N. Henze. A probabilistic representation of the " skew-normal" distribution [J]. Scandinavian Journal of Statistics, 1986, 13 (4) : 271 - 275.
  • 8M. Eling. Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models? [J]. Insurance: Mathematics and Economics, 2012, 51 (2) :239 - 248.
  • 9E. W. Frees, V. R. Young, Y. Luo. A longitudinal data analysis interpretation of credibility models [J]. Insurance: Mathematics and Economics 1999, 24:229 - 247.
  • 10茆诗松 王静龙 濮晓龙.高等数理统计[M].北京:高等教育出版社,2003..

二级参考文献3

  • 1Rob Kaas,Marc Goovaerts,Jan Dhaene and Michel Denuit.Modem Actuarial Risk Theory[M].Kluwer Academic Publishers.2001.
  • 2Luyang Fu,and Cheng-sheng Peter Wu.Generalized Minimum Bias Models[J].CAS Forum.Winter 2005.72-121.
  • 3Noriszura Ismail and Abdul Aziz Jemain.Bridging Minimum Bias and Maximum Likelihood Methods through Weighted Equation[J].CAS Forum.Spring 2005.367-394.

共引文献28

同被引文献51

引证文献5

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部