期刊文献+

基于非下采样Shearlet变换与聚焦区域检测的多聚焦图像融合算法 被引量:9

Multi-focus image fusion algorithm based on nonsubsampled shearlet transform and focused regions detection
下载PDF
导出
摘要 为了提高基于多尺度变换的多聚焦图像融合中聚焦区域的准确性,提出了一种基于非下采样Shearlet变换(NSST)与聚焦区域检测的多聚焦图像融合算法。首先,通过基于非下采样Shearlet变换的融合方法得到初始融合图像;其次,将初始融合图像与源多聚焦图像作比较,得到初始聚焦区域;接着,利用形态学开闭运算对初始聚焦区域进行修正;最后,在修正的聚焦区域上通过改进的脉冲耦合神经网络(IPCNN)获得融合图像。与经典的基于小波变换、Shearlet变换的融合方法以及当前流行的基于NSST和脉冲耦合神经网络(PCNN)的融合方法相比,所提算法在客观评价指标互信息(MI)、空间频率和转移的边缘信息上均有明显的提高。实验结果表明,所提出的算法能更准确地识别出源图像中的聚焦区域,能从源图像中提取出更多的清晰信息到融合图像。 To improve the accuracy of focusd regions in multifocus image fusion based on muhiscale transform, a multifocus image fusion algorithm was proposed based on NonSubsampled Shearlet Transform (NSST) and focused regions detection. Firstly, the initial fused image was acquired by the fusion algorithm based on NSST. Secondly, the initial focusd regions were obtained through comparing the initial fused image and the source multifocus images. And then, the morphological opening and closing was used to correct the initial focusd regions. Finally, the fused image was acquired by the Improved Pulse Coupled Neural Network (IPCNN) in the corrected focusd regions. The experimental results show that, compared with the classic image fusion algorithms based on wavelet or Shearlet, and the current popular algorithms based on NSST and Pulse Coupled Neural Network (PCNN), objective evaluation criterions including Mutual Information (MI), spatial frequency and transferred edge information of the propcsed method are improved obviously. The result illustrates that the proposed method can identify the focusd regions of source images more accurately and extract more sharpness information of source images to fusion image.
出处 《计算机应用》 CSCD 北大核心 2015年第2期490-494,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61362021) 广西省自然科学基金资助项目(2013GXNSFDA019030 2013GXNSFAA019331 2012GXNSFBA053014 2012GXNSFAA053231 2014GXNSFDA118035 桂科攻1348020-6 桂科能1298025-7) 广西教育厅重点项目(201202ZD044 2013YB091) 桂林市科技开发项目(20130105-6 20140103-5)
关键词 图像融合 多聚焦图像 非下采样剪切波变换 聚焦区域检测 形态学开闭运算 image fusion multifocus image NonSubsampled Shearlet Transform (NSST) focused region detection morphological opening and closing
  • 相关文献

参考文献15

  • 1HUANG W, JING Z. Evaluation of focus measures in multi-ficus image fusion [J]. Pattern Recognition Letters, 2007, 28(4): 493 -500.
  • 2晁锐,张科,李言俊.一种基于小波变换的图像融合算法[J].电子学报,2004,32(5):750-753. 被引量:153
  • 3梁栋,李瑶,沈敏,高清维,鲍文霞.一种基于小波-Contourlet变换的多聚焦图像融合算法[J].电子学报,2007,35(2):320-322. 被引量:30
  • 4DO M N, VETrERLI M. The contourlet transform: an efficient di- rectional multiresolution image representation [ J]. IEEE Transac- tions on Image Processing, 2005, 14(12) : 2091 -2106.
  • 5LIM W Q. The discrete shearlet transform: a new directional trans- form and compactly supported shearlet frames [ J]. IEEE Transac- tions on Image Processing, 2010, 19(5): 1166 -1180.
  • 6苗启广,石程,许鹏飞,杨眉,史耀波.Multi-focus image fusion algorithm based on shearlets[J].Chinese Optics Letters,2011,9(4):25-29. 被引量:11
  • 7CHENG S, MIAO Q, XU P. A novel algorithm of remote sensing image fusion based on shearlets and PCNN [ J]. Neurocomputing, 2013, i17:47-53.
  • 8KONG W, ZHANG L, LEI Y. Novel fusion method for visible light and infrared images based on NSST-SF-PCNN [ J]. Infrared Physics & Technology, 2014, 65:103-112.
  • 9LI H, CHAI Y, LI Z. Multi-focus image fusion based on nonsub- sampled contourlet transform and focused regions detection [ J]. Op- tik- International Journal for Light and Electron Optics, 2013, 124(1): 40-51.
  • 10JOHNSON J L, PADGETT M L. PCNN models and applications [J]. IEEE Transactions on Neural Networks, 1998, 10(3): 480 - 498.

二级参考文献26

  • 1S. G. Mallat, IEEE Trans. Pattern Anal. Mach. Intell. 11, 674 (1989).
  • 2K. Amolins, Y. Zhang, and P. Dare, WISPRS J. Pho- togram. Remote Sens. 62, 249 (2007).
  • 3Q. Wang, z. Li, J. Lai, and A. He, Chin. Opt. Lett. 8, 278 (2010).
  • 4M. N. Do and M. Vetterli, IEEE Trans. Image Process. 14, 2091 (2005).
  • 5L. Yang, B. L. Guo, and W. Ni, Neurocomputing 72, 203 (2008).
  • 6Q. Li, Y. Zeng, X. Peng, and K. Yang, Chin. Opt. Lett. 8, 577 (2010).
  • 7G. Kutyniok and D. Labate, Trans. Am. Math. Soc. 361, 2719 (2009).
  • 8G. Kutyniok and D. Labate, Journal of Wavelet Theory and Applications 1, 1 (2007).
  • 9G. R. Easley, D. Labate, and W.-Q Lim, Appl. Comput. Harmon. Anal. 25, 25 (2008).
  • 10K. Guo and D. Labate, SIAM J. Math. Anal. 39, 298 (2007).

共引文献190

同被引文献104

  • 1刘贵喜,赵曙光,陈文锦.红外与可见光图像融合的多分辨率方法[J].光电子.激光,2004,15(8):980-984. 被引量:24
  • 2高广珠,李忠武,余理富,何智勇.归一化互相关系数在图像序列目标检测中的应用[J].计算机工程与科学,2005,27(3):38-40. 被引量:17
  • 3毕英伟,邱天爽.一种基于简化PCNN的自适应图像分割方法[J].电子学报,2005,33(4):647-650. 被引量:58
  • 4康圣,王江安,宗思光,陈福胜.图像融合的量化评价方法及实验分析[J].光电子技术与信息,2006,19(2):59-63. 被引量:12
  • 5MALAMAS E N, PETRAKIS E G M, ZERVAKIS M, et al. A survey on industrial vision systems, applications and tools [ J ]. Image and Vision Computing, 2003, 21(2) : 171-188.
  • 6LUCCHI A, SMITH K, ACHANTA R. Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features [J]. IEEE Transactions on Medi- cal Imaging, 2012, 31(2):474-486.
  • 7SALE D, PATIL V, JOSHI M A. Effective image enhance- ment using hybrid multi resolution image fusion[ C ]. Global Conference on Wireless Computing and Networking, 2014: 116-120.
  • 8HASSEN R, WANG ZH, SALAMA M. Objective quality assessment for muhiexposure muhifocus image fusion [ J ]. Transactions on Image Processing, 2015, 24 ( 9 ) : 2712-2724.
  • 9LUO X, ZHANG Z. WU X. Adaptive multistrategy image fusion method[ J]. Journal of Electronic Imaging, 2014, 23(5) : 053011.
  • 10SABALAN D, HASSAN G. MRI and PET image fusion by combi-ning IHS and retina-inspired models[ J]. Information Fusion, 2010, 11:114-123.

引证文献9

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部