期刊文献+

一类离散时间异构多智能体系统有向图下的一致性分析 被引量:1

Consensus analysis for a class of discrete-time heterogeneous multi-agent system in directed topology
下载PDF
导出
摘要 研究了离散时间一阶二阶混合的异构多智能体系统有向通信下的一致性问题。首先,对该系统内的个体分别提出了相应的一致性协议。针对该异构系统不满足离散时间系统研究中凸性要求的问题,本文引入了一个非奇异变换,采用非负矩阵理论和一致性理论,分别分析得出了系统在固定和动态拓扑下实现一致性的充分条件。当通信拓扑包含生成树,采样时间和控制参数在一定范围内取值系统将获得一致性,该范围取决于通信拓扑的度矩阵。最后,通过仿真对该结论进行了验证。 The consensus problem for a class of discrete-time heterogeneous multi-agent system composed of first-order and second-order agents in directed topology is investigated. Firstly, two consensus protocols are constructed. Because the convexity conditions can not be satisfied in this system, a non-singular transformation is imposed on the system. Then, based on the theory of the nonnegative matrix and the consensus theory, the sufficient conditions for achieving consensus are obtained in fixed and dynamical switching topologies. When the communication topology contains the spanning tree, and sampling time and control parameters can satisfy some conditions, the system will achieve consensus. Finally, numerical simulations are shown to demonstrate the theoretical results.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第3期693-699,共7页 Systems Engineering and Electronics
基金 陕西省科技攻关项目(2012K06-45)资助课题
关键词 异构多智能体系统 一致性 离散时间 非负矩阵 heterogeneous multi-agent system consensus discrete-time non-negative matrix
  • 相关文献

参考文献17

  • 1Jadbabaie A, Lin J, Morse A S. Coordination of groups of mo bile autonomous agents using nearest neighbor rules[J]. IEEE Trans. on Automatic Control, 2003, 48(6) :988-1001.
  • 2Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time delays[J]. IEEE Trans. on Automatic Control , 2004, 49(9) :1520 - 1533.
  • 3Ren W, Beard R W. Consensus seeking in multi-agent systems under dynamically changing interaction topologies [J]. IEEE Trans. on Automatic Control, 2005, 50(5) :655 - 661.
  • 4Xiao F, Wang L. Consensus problems for high-dimensional multi-agent systems[J]. IET Control Theory & Applications, 2007,1(3) :830 - 837.
  • 5Zhu M, Martinez S. Discrete-time dynamic average consensus[J]. Automatica, 2010,46 (2) : 322 - 329.
  • 6He W, Cao H. Consensus control for high order multi-agent systems[J]. IET Control Theory and Applications, 2011,5 ( 1 ) 231 -239.
  • 7Xi J X, Shi Z Y, Zhong Y S. Admissible consensus and consen- sualization of high-order linear time-invariant singular swarm systems[J]. PhysicaA, 2012,391(7):5839-5849.
  • 8You K Y, Li Z K, Xie L H. Consensus condition for linear multi-agent systems over randomly switching topologies[J]. Au tomatica, 2013, 49(8) :8125 - 3132.
  • 9Zheng Y, Zhu Y, Wang L. Consensus of heterogeneous multi a- gent systems[J]. IET Control Theory and Application, 2011, 16(5) :1881 - 1888.
  • 10朱亚锟,关新平,罗小元.Finite-time consensus of heterogeneous multi-agent systems[J].Chinese Physics B,2013,22(3):550-555. 被引量:3

二级参考文献23

  • 1Yan J, Guan X P and Luo X Y 2011 Chin. Phys. B 20 018901.
  • 2Hu J and Yuan H 2009 Chin. Phys. B 18 3777.
  • 3Huang J, Farritor S M, Qadi A and Goddard S 2006 IEEE/ASME Trans. Mechatronics 11 205.
  • 4Lin P and Jia Y 2009 Automatica 45 2154.
  • 5Xiao F and Wang L 2006 Int. J. Control 79 1277.
  • 6Tian Y P and Liu C L 2008 IEEE Trans. Automat. Control 53 2122.
  • 7Yan J, Guan X P and Luo X Y 2011 Chin. Phys. B 20 048901.
  • 8Ni W and Cheng D 2010 Syst. Control Lett. 59 209.
  • 9Hong , Gao L, Cheng D and Jiang J 2007 1EEE Trans. Automat. Con- trol 52 943.
  • 10Lee D J and Spong M K 2006 Proceedings of the American Control Conference Minneapolis, USA, June 14-16, 2006 p. 756.

共引文献2

同被引文献18

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部