摘要
研究了离散时间一阶二阶混合的异构多智能体系统有向通信下的一致性问题。首先,对该系统内的个体分别提出了相应的一致性协议。针对该异构系统不满足离散时间系统研究中凸性要求的问题,本文引入了一个非奇异变换,采用非负矩阵理论和一致性理论,分别分析得出了系统在固定和动态拓扑下实现一致性的充分条件。当通信拓扑包含生成树,采样时间和控制参数在一定范围内取值系统将获得一致性,该范围取决于通信拓扑的度矩阵。最后,通过仿真对该结论进行了验证。
The consensus problem for a class of discrete-time heterogeneous multi-agent system composed of first-order and second-order agents in directed topology is investigated. Firstly, two consensus protocols are constructed. Because the convexity conditions can not be satisfied in this system, a non-singular transformation is imposed on the system. Then, based on the theory of the nonnegative matrix and the consensus theory, the sufficient conditions for achieving consensus are obtained in fixed and dynamical switching topologies. When the communication topology contains the spanning tree, and sampling time and control parameters can satisfy some conditions, the system will achieve consensus. Finally, numerical simulations are shown to demonstrate the theoretical results.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2015年第3期693-699,共7页
Systems Engineering and Electronics
基金
陕西省科技攻关项目(2012K06-45)资助课题
关键词
异构多智能体系统
一致性
离散时间
非负矩阵
heterogeneous multi-agent system
consensus
discrete-time
non-negative matrix