期刊文献+

应用径向基代理模型实现序列自适应再采样优化策略 被引量:3

Adaptive resampling strategy of sequential optimization based on radial basis function surrogate model
下载PDF
导出
摘要 针对径向基插值代理模型样本点预测误差为零时无法获得误差函数进行序列再采样优化的问题,将样本点分布约束引入序列再采样过程,利用潜在最优解加速收敛性,提出一种适用于径向基插值代理模型序列优化的再采样策略,该策略兼顾仿真模型的输出响应特性与样本点的空间分布特性。仿真结果表明,使用该再采样策略后,算法寻优效率和精度均优于传统基于代理模型的优化方法,在对最优解进行有效预测的同时,能显著减少原始模型计算次数。 Taking account of that it is difficult to obtain the error function to make sequential re-sampling optimization when the predicted error of sampling points in radial basis function( RBF) interpolation surrogate model is zero,the constraint of sampling point distribution was applied in the process of sequential re-sampling. Taking advantage of the convergence performance of potential optimal solution,a re-sampling strategy which is suitable for the sequential optimization of RBF interpolation surrogate model was proposed. The strategy matches the input response property of emulation model with the spatial distribution property of sampling points. Simulation results indicate that the optimization efficiency and precision of the proposed strategy is higher than that of the traditional optimization method based on surrogate model. The optimum point can be well predicted and the number of computational times in primitive model can be reduced obviously by the proposed strategy.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2014年第6期18-24,共7页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(51105368) 国防科技大学学校科研计划资助项目(JC12-01-05)
关键词 径向基插值 代理模型 序列优化 再采样策略 radial basis function interpolation surrogate model sequential optimization resampling strategy
  • 相关文献

参考文献15

  • 1Forrester A I J, Keane A J. Recent advances in surrogate- based optimization[ J]. Progress in Aerospace Sciences, 2009,45(1 -3) : 50-79.
  • 2Sacks J,Welch W J, Mitchell T J, et al. Design and analysis of computer experiments[ J]. Statistical Science, 1989, 4(4) : 409 - 435.
  • 3Jin R, Chen W, Simpson T W. Comparative studies of metamodeling techniques under multiple modeling criteria[ J]. Structural and Multidisciplinary Optimization,2001,23 (1) : 1 -13.
  • 4Queipo N V, Haftka R T, Shyy W, et al. Surrogate-based analysis and optimization[ J]. Progress in Aerospace Sciences, 2005, 41(1) : 1 -28.
  • 5高月华,王希诚.基于Kriging代理模型的多点加点序列优化方法[J].工程力学,2012,29(4):90-95. 被引量:26
  • 6Jones D R. A taxonomy of global optimization methods based on response surfaces[ J]. Journal of Global Optimization, 2001,21 (4) : 345 -383.
  • 7李晓斌,金振中,邹汝平,张为华.基于Kriging函数的序贯近似建模方法[J].机械设计与研究,2007,23(3):6-10. 被引量:3
  • 8Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions [ J ]. Journal of Global Optimization, 1998, 13(4) : 455 -492.
  • 9Jin R C, Chen W, Sudjianto A. An efficient algorithm for constructing optimal design of computer experiments [ J ]. Journal of Statistical Planning and Inference, 2005, 134( 1 ) : 268 - 287.
  • 10刘晓路,陈英武,荆显荣,陈盈果.优化拉丁方试验设计方法及其应用[J].国防科技大学学报,2011,33(5):73-77. 被引量:58

二级参考文献34

  • 1张润楚,王兆军.关于计算机试验的设计理论和数据分析[J].应用概率统计,1994,10(4):420-436. 被引量:29
  • 2李晓斌,金振中,邹汝平,张为华.基于Kriging函数的序贯近似建模方法[J].机械设计与研究,2007,23(3):6-10. 被引量:3
  • 3McKay M D, Beckman R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979,21 (2): 239-245.
  • 4Owen A. Orthogonal arrays for computer experiments, integra tion and visualization [J]. Statistica Sinica, 1992, 2 (2):439 -452.
  • 5Tang B. Orthogonal array based Latin hypercubes[J], Journal of the American Statistical Association, 1993, 88 (424):1392 -1397.
  • 6Johnson M, Morre L, Ylvisaker D. Minimax and maximum distance designs[J]. Journal of Statistical Planning and Inference, 1990,26(2) : 131 -- 148.
  • 7Morris M D, Mitchell T J. Exploratory designs for computational experiments[J]. Journal of Statistical Planning and Inference 1995,43(3) : 381 - 402.
  • 8Hickernell F J. A generalized discrepancy and quadrature error bound [J]. Mathematics of Computation, 1998, 67 ( 221 ): 299 -322.
  • 9Joseph V R, Ying Hung. Orthogonal-maximin Latin hypercube designs[J]. Statistica Sinica, 2008, 18 (1) : 171 - 186.
  • 10Jin R, Chen W, Sudjianto A. An efficient algorithm for con strutting oplimal design of computer experiments[J]. Journal of statistical planning and inference, 2005,134 ( 1 ) : 268 - 287.

共引文献91

同被引文献30

  • 1雍恩米,陈磊,唐国金.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397-406. 被引量:125
  • 2杨涓,戎海武,朱燕堂,徐伟.固体发动机药柱优化设计[J].推进技术,1997,18(2):98-102. 被引量:5
  • 3王鹏,李旭昌,徐颖军.固体火箭发动机总体优化设计[J].火箭推进,2007,33(4):16-19. 被引量:7
  • 4王有元.固体火箭发动机设计[M].北京:国防工业出版社,1984.
  • 5Alexander I J, Forrester, Keane A J. Recent advances in surrogate-based optimization [ J ]. Progress in Aerospace Sci- ences, 2009, 45( 1-3): 50-79.
  • 6Sun F, Liu M, Lin D K J. Construction of orthogonal Latin hypercube designs[ M]. Biometrika, 2009.
  • 7Grosso A, Jamali A, Locatelli M. Finding maximin Latin hypercube designs by Iterated Local Search heuristics [ J ]. European Journal of Operational Research, 2009, 197(2) : 541-547.
  • 8Cioppa T M, Lucas T W. Efficient nearly orthogonal and space-filling latin hypereubes [ J ]. Technometrics, 2007, 49(1) : 45-55.
  • 9Wang D, Hu F, Ma Z, et al. A CAD/CAE integrated framework for strnctural design optimization using sequen- tial approximation optimization[ J]. Advances in Engineer- ing Software, 2014, 76: 56-68.
  • 10Jones D R. A taxonomy of global optimization methods based on response surfaces [ J ]. Journal of Global Optimi- zation, 2001, 23: 345-383.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部