摘要
利用Mawhin的重合度理论中的延拓定理,讨论了一类具有多个偏差变元的二阶中立型泛函微分方程(x(t)-cx(t-σ))″+f(x(t-τ(t)))+g(x(t-γ(t)))=e(t)周期解问题,获得了这类方程存在唯一周期解新的充分条件,推广和改进了已有文献的相关结果.
By using the coincidence degree theory, the periodic solutions for a class of second order nonlinear neutral functional differential equations (x (t) --cx (t -σ ) )″ + f (x (t - r (t) ) ) + g (x (t - γ (t) ) ) = e (t) are investigated. Some new sufficient conditions for the existence and uniqueness of periodic solution of the equations are obtained, the results have extended and improved the related reports in the literatures.
出处
《广西民族大学学报(自然科学版)》
CAS
2014年第4期46-53,共8页
Journal of Guangxi Minzu University :Natural Science Edition
基金
广西自然科学基金(2013GXNSFAA019022)
广西高校科研项目基金(2013YB243)
关键词
二阶中立型泛函微分方程
周期解
存在性唯一性
重合度
second-order neutral functional differential equation
periodic solutions
existence and uniqueness
coincidence degree