摘要
针对时滞细胞神经网络,提出了一种基于代数判据的抗饱和补偿设计。运用M矩阵理论、迪尼导数、系统参数设计了无饱和输入限制系统镇定的代数判据。在此基础上,利用不等式放缩原理、分区讨论与大中取大综合方法和Lyapunov理论,得出了二次矩阵不等式形式的抗饱和控制设计方案,进而将之转化为线性矩阵不等式。同时,给出了吸引域及其最大化方法。仿真验证了该设计方案的可行性和有效性。
This paper proposes an algebraic anti-saturation compensation design for time-delay chaotic cellular neural networks and presents an algebraic condition of control for time-delay chaotic cellular neural networks without saturable input according to M-matrix theory,Dini derivative and system parameters.When the input is saturable,QMI control criterion can be obtained,from the inequality scaling principle,zoned discussion and maximum synthesis and Lyapunov theory and thus changed into LMI criterion.And meanwhile the attraction domain and its optimization are offered.The simulation results verify the effectiveness and feasibility of the proposed method.
出处
《海军工程大学学报》
CAS
北大核心
2015年第1期35-40,共6页
Journal of Naval University of Engineering
基金
国家自然科学基金资助项目(61374003)