期刊文献+

Application of time-temperature superposition method in thermal aging life prediction of shipboard cables

Application of time-temperature superposition method in thermal aging life prediction of shipboard cables
下载PDF
导出
摘要 The life of shipboard cables will decrease due to the complex aging processes. In terms of the safety perspective, remaining life prediction of the cable is essential to maintain a reliable operation. In this paper, firstly, based on Arrhenius equation, residual life of new styrene-butadiene cable is calculated; result indicates that the degradation rate which changes with time is proportional to thermal temperature. Then second order dynamic model is adopted into the residual life prediction, combined with the time-temperature superposition method(TTSP), and a new residual life model is proposed. According to the accelerated thermal aging experiment data and Arrhenius equation, TTSP method demonstrates to be an efficient way for life prediction, and life at normal temperature can be estimated by this model. In order to monitor the state of styrene-butadiene cable more accurately, an improved residual life model based on equivalent environment temperature of cable is proposed, and life of cable under real operation is analyzed. Result indicates that this model is credible and reliable, and it provides an important theoretical base for residual life of cables. The life of shipboard cables will decrease due to the complex aging processes. In terms of the safety perspective, remaining life prediction of the cable is essential to maintain a reliable operation. In this paper, firstly, based on Arrhenius equation, residual life of new styrene-butadiene cable is calculated; result indicates that the degradation rate which changes with time is proportional to thermal temperature. Then second order dynamic model is adopted into the residual life prediction, combined with the time-temperature superposition method (TTSP), and a new residual life model is proposed. According to the accelerated thermal aging experiment data and Arrhenius equation, TTSP method demonstrates to be an efficient way for life prediction, and life at normal temperature can be estimated by this model. In order to monitor the state of styrene-butadiene cable more accurately, an improved residual life model based on equivalent environment temperature of cable is proposed, and life of cable under real operation is analyzed. Result indicates that this model is credible and reliable, and it provides an important theoretical base for residual life of cables.
出处 《Journal of Chongqing University》 CAS 2014年第4期142-150,共9页 重庆大学学报(英文版)
关键词 insulated cable thermal aging Arrhenius equation TTSP residual life insulated cable thermal aging Arrhenius equation TTSP residual life
  • 相关文献

参考文献8

二级参考文献75

共引文献237

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部