期刊文献+

Kinect传感器的彩色和深度相机标定 被引量:27

Calibration of Kinect sensor with depth and color camera
原文传递
导出
摘要 目的针对现有的Kinect传感器中彩色相机和深度相机标定尤其是深度相机标定精度差、效率低的现状,本文在现有的基于彩色图像和视差图像标定算法的基础上,提出一种快速、精确的改进算法。方法用张正友标定法标定彩色相机,用泰勒公式化简深度相机中用于修正视差值的空间偏移量以简化由视差与深度的几何关系构建的视差畸变模型,并以该模型完成Kinect传感器的标定。结果通过拍摄固定于标定平板上的标定棋盘在不同姿态下的彩色图像和视差图像,完成Kinect传感器的标定,获得彩色相机和深度相机的畸变参数及两相机之间的旋转和平移矩阵,标定时间为116 s,得到彩色相机的重投影误差为0.33,深度相机的重投影误差为0.798。结论实验结果表明,该改进方法在保证标定精度的前提下,优化了求解过程,有效提高了标定效率。 Objective Given the low efficiency and poor accuracy of the recent calibration method for the Kinect sensor with depth and color camera, we propose an improved algorithm that can quickly and accurately calibrate the color and depth camera of the Kinect sensor based on color and disparity images. Method The algorithm considers the features of color and depth simultaneously to improve the calibration of the Kinect sensor. The color camera was calibrated using Zhang's meth- od, and the depth camera was calibrated using a Kinect disparity distortion correction model. This model represents the ge- ometric relationship between disparity and depth and uses a spatially varying offset simplified by Taylor's formula that decays as Kinect disparity increases. Result The Kinect sensor was calibrated using multiple views of the calibration plane to ob- tain the color and disparity images that would be used to obtain the distortion parameters and the rotation and translation ma- trix between the two cameras. The spatial distortion parameter by Taylor's formula was streamlined to simplify the distortion correction model of the depth camera and to optimize the solution process. The reprojeetion error of the color camera was 0. 33, whereas that of the depth camera was 0. 798 ; the running tine of our calibration process was 116 s. Conclusion Ex- periments show that the proposed algorithm can ensure the accuracy and improve the efficiency of the calibration process.
机构地区 装备学院
出处 《中国图象图形学报》 CSCD 北大核心 2014年第11期1584-1590,共7页 Journal of Image and Graphics
关键词 视差图像 Kinect传感器 畸变校正 相机标定 disparity image Kinect sensor distortion correction camera calibration
  • 相关文献

参考文献12

  • 1Engelhard N, Endres F, Hess J, et al. Real-time 3D visual SI.AM with a hand-held RGB-D camera [ C]//The RGB-D Workshop on 3D Pereeption in Robotics at the Empean Robotics Forum. Robotdalen, Sweden : Association for Computing Machiney, 2011 : 239-248.
  • 2Izadi S, Kim D, Hilliges O, et al. KinectFusion: real-time 30 re- conslruetion and interactinn using a mnving depth camera [ C ]//The 24th Annual ACM Symposium on User Interface Software and Technology. Santa Barbara, CA : ACM,2011:559-568.
  • 3Tong J, Zhou J, Liu L, et al. Scanning 3d full human bodies using kinects[J]. Visualization and Computer Graphics, 2012, 18(4) : 643-650.
  • 4Lee S, Ho Y. Real-time Stereo view generation using kinect depth camera[ C]//Proceedings of 2011 Asia-Pacific Signal and Information Processing Association Annual Conference. Cam- bridge : Cambridge University Press, 2011 : 123-133.
  • 5Lee W, Park N, Woo W. Depth-assisted real-time 3D object de- tection for augmented reality [ C ]// Proceedings of ICAT' 11. Osaka, Japan: WorldPress, 2011 : 126-132.
  • 6Peter H, Michael K, Evan H, et al. RGB-D mapping: Using Ki- nect-style depth cameras for dense 3D modeling of indoor envi- ronments [ J ]. International Journal of Robotics Research, 2012, 31 (5) :647-663.
  • 7Smisek J, Jancosek M, Pajdla T. 3D With Kinect[ M]. London : Consumer Depth Cameras for Computer Vision, 2013 : 3-25.
  • 8Herrera C, Kannala J, Heikkila J. Joint depth and color camera calibration with distortion correction [ J ]. Pattern Analysis and Machine Intelligence, 2012, 34 (10) : 2058-2064.
  • 9Arieli Y, Freedman B, Machline M, et al. Depth mapping using projected patterns: U.S. 8150142 B2 [P]. 2012-4-3.
  • 10Zhang Z. A flexible new technique for camera calibration [ J ]. Pattern Analysis and Machine Intelligence, 2000, 22 ( 11 ) : 1330-1334.

同被引文献126

引证文献27

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部