期刊文献+

大规模向量式有限元行为数据无损压缩模型 被引量:1

Massive Vector Form Intrinsic Finite Element Behavior Data Lossless Compression Model
下载PDF
导出
摘要 针对向量式有限元产生的海量的高精度行为数据在基于web的体系架构的数据传输和文件读取的瓶颈,依据向量式有限元行为数据的内部联系和冗余特点,建立了行为数据的数学模型,并对冗余数据进行删减和合并,提出一种有效的无损压缩模型.最后,给出基于模型的压缩算法.经过验证,数据的规模显著减小,极大提升了数据处理的效率.解压时则完全还原原始数据,完全不影响行为数据的精度. The behavior data of vector form intrinsic finite element computing has a large size as well as high accuracy,which become the bottleneck of data transmission and read that based on web.In order to resolve the problem.According to the characteristics of redundancy and the internal relations of behavior data,a mathematic model for the behavior data is proposed and according to the model,a lossless compression model is put forward by deleting and merging the redundancy data.In the end,an efficient compression algorithm is given based on the model.Experiment indicates that the algorithm greatly compresses size of behavior data and accelerates the load speed of data.The decompressed file can be restored to the original data and the accuracy of behavior data doesn't be affected at all.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第1期126-132,145,共8页 Journal of Tongji University:Natural Science
基金 国家自然科学基金(41171303)
关键词 向量式有限元 行为数据 无损压缩 vector form intrinsic finite element behavior data lossless compression
  • 相关文献

参考文献11

  • 1卢哲刚,姚谏.向量式有限元--一种新型的数值方法[J].空间结构,2012,18(1):85-91. 被引量:11
  • 2Ting E C, Shih C, Wang Y K. Fundamentals of a vector form intrinsic finite element: Part Ⅰ. Basic procedure and a plane frame element[J]. Journal of Mechanics, 2004, 20(2): 113.
  • 3Ting E C, Shih C, Wang Y K. Fundamentals of a vector form intrinsic finite element.. Part Ⅱ. Plane solid elements [J]. Journal of Mechanics, 2004, 20(2) : 123.
  • 4Shih C, Wang Y K, Ting E C. Fundamentals of a vector form intrinsic finite element: Part Ⅲ. Convected material frame and examples[J]. Journal of Mechanics, 2004, 20(2) : 133.
  • 5吴乐南.数据压缩[M].2版.北京:电子工业出版社,2006.
  • 6Witten I H, Neal R M, Cleary J G. Arithmetic coding for data compression [J]. Communications of the ACM, 1987,30(6) : 95.
  • 7Chen D, Chiang Y J, Memon N, et at. Optimal alphabet partitioning for semi-adaptive coding of sources of unknowns parse distributions [C]//Proceedings of Data Compression Snowbird. Los Alamitos: [s. n. ], 2003:372-381.
  • 8Kobbelt L, Botsch M. A survey of point-based techniques in computer graphics[J]. Computers & Graphics, 2004, 28(6) : 801.
  • 9Grossman J P, Dally W J. Point sample rendering [C]// Proceedings of the 9th Eurographics Workshop on Rendering. Vienna, Springer-Verlag/Wien, 1998: 181-192.
  • 10Waschbfisch M, Gross M, Eberhard F, et al. Progressive compression of point-sampled models [C]//Proceedings of Eurographics Symposium on Point-Based Graphics. Zurich: Eurographics Association, 2004: 95-102.

二级参考文献33

  • 1TING E C,SHIH C,WANG Y K.Fundamentals of avector form intrinsic finite element:Part 1.Basic proce-dure and a plane frame element[J].Journal of Mechan-ics,2004,20(2):113-122.
  • 2TING E C,SHIH C,WANG Y K.Fundamentals of avector form intrinsic finite element:Part 2.Plane solidelement[J].Journal of Mechanics,2004,20(2):123-132.
  • 3SHIH C,WANG Y K,TING E C.Fundamentals of avector form intrinsic finite element:Part 3.Convectedmaterial frame and examples[J].Journal of Mechanics,2004,20(2):133-143.
  • 4林民廷.二维可变形块体之向量式运动分析[D].台湾:国立中央大学,2006.
  • 5吴思颖.向量式刚架有限元于二维结构之大变位与接触行为分析[D].台湾:中原大学,2005.
  • 6王仁佐 庄清锵 吴东岳等.向量式空间桁架弹塑性大变形分析.中国土木水利工程学刊,2004,:633-646.
  • 7张燕如.钢结构火害之向量式有限元素法分析[D].台湾:国立成功大学,2007.
  • 8BSI.Structural Use of Steelwork in Building,Part8,Code of Practice for Fire Resistance[S],2003.
  • 9LIEN K H,CHIOU Y J,WANG R Z,et al.Nonlinearbehavior of steel structures considering the cooling phaseof a fire[J].Journal of Constructional Steel Research,2009,65:1776-1786.
  • 10LIEN K H,CHIOU Y J,WANG R Z,et al.Vectorform intrinsic finite element analysis of nonlinear be-havior of steel structures exposed to fire[J].Engineer-ing Structures,2010,32:80-92.

共引文献10

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部