期刊文献+

基于时频分析的水声目标被动检测模型研究 被引量:4

Passive Detection Models of Underwater Acoustic Target Based on Time-Frequency Analysis
下载PDF
导出
摘要 为了获取复杂环境中瞬态或非平稳水声信号的特征和高检测概率,提出了一种基于时频分析和统计模型的水声目标被动检测方法,建立了基于短时傅里叶变换、Wigner-Ville分布和小波变换这3种时频分析方法的被动检测模型。结合实测的舰船辐射噪声数据进行目标检测与分析,结果表明,尽管这3种时频分析方法都能有效地将目标检测出来,但是基于小波变换的被动检测模型的检测性能最好。 To extract the non-stationary or transient features of targets in complicated underwater environment and achieve high detection probability, a novel passive detection method of underwater acoustic target based on time-fre- quency analysis and statistical model is proposed, and three passive detection models are established based on short time Fourier transform(STFT), Wigner-Ville distribution, and wavelet transform, respectively. Target detection is conducted with these three models on the basis of the measured data of ship-radiated noise, and the results show that all three models achieve satisfactory target detection, of which the model based on wavelet transform behaves best.
作者 严侃 雷江涛
机构地区 海装西安局
出处 《鱼雷技术》 2015年第1期26-29,共4页 Torpedo Technology
关键词 时频分析 水声信号 目标检测 time-frequency analysis acoustic signal target detection
  • 相关文献

参考文献4

  • 1Albert B, Francis J N. A First Course in Wavelets with Fourier Analysis[M]. 2th ed. American: John Wiley & Sons Inc, 2001.
  • 2Mallat S G,杨力华.信号处理的小波导引[M].北京:机械工业出版社,2002:340-358.
  • 3StevenMK.统计信号处理基础-估计与检测理论[M].罗鹏飞,译.北京:电子工业出版社,2006.
  • 4冯讯,王首勇,万洋,朱晓波.非高斯相关杂波背景下雷达目标统计检测方法[J].电波科学学报,2012,27(5):1005-1011. 被引量:3

二级参考文献16

  • 1刘立东,吴顺君,孙晓闻.一种新的多频带相干雷达恒虚警检测算法[J].电波科学学报,2004,19(6):679-684. 被引量:3
  • 2RANGASWAMY M, GINI F, STINCO P, et al. Im pact of sea clutter nonstationarity on disturbance co variance matrix estimation and CFAR detector per formance[J]. IEEE Transactions on Aerospace and E lectronic System, 2010, 46(3): 1502-1513.
  • 3ANTIPOV I. Statistical analysis of northern Australian coastline sea clutter data[R]. Edinburgh: DSTO Electronics and Surveillance Research Laboratory, 2001.
  • 4CHIN C, PASCAL F, OVARLEZ P. MIMO radar detection in non-Gaussian and heterogeneous clutter [J]. IEEE Journal of Signal Processing, 2010, 4(1) 115-126.
  • 5MAIO A, CONTE E. Uniformly most powerful invar- iant detection in spherically invariant random vector distributed clutter[J]. IET Radar, Sonar and Naviga-tion, 2010, 4(4): 560-563.
  • 6GINI F, GRECO V, FARINA A, et al. Optimum and mismatched detection against K-distributed plus Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic System, 1998, 34(3): 860-875.
  • 7CONTE E, RICCI G. Sensitivity study of GLRT de- tection in compound-Gaussian clutter[J]. IEEE Trans- actions on Aerospace and Electronic Systems, 1998, 34(1) : 308-316.
  • 8TSIHRINTZIS G, NIKIAS C. Data-Adaptive algo- rithms for signal detection in sub-Gaussian impulsive interierence[J]. IEEE Transactions on Signal Pro- cessing, 1997, 45(7): 1873-1878.
  • 9EMMANUELLE J, PHILIPPE O. BORD: bayesian optimum radar deteetor[J]. Signal Processing, 2003, 83(6): 1151-1162.
  • 10ARULAMPALAM M, MASKELL S. A tutorial on particle filters for online nonlinear-non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2) : 174-188.

共引文献8

同被引文献21

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部