期刊文献+

基于MIM结构等离子体波导定向耦合器 被引量:10

Directional Couplers Based on MIM Plasmonic Waveguide Stuctures
原文传递
导出
摘要 理论设计了带有扇环共振微腔的弯曲金属-介质-金属(MIM)波导结构,利用共振微腔结构控制表面等离子体波在扇环直角顶点处的定向传播。通过有限时域差分(FDTD)法计算带有扇环微腔结构的直波导透射率与波长关系,并计算扇环微腔结构与传播波导间的间隔对光学性质的影响,发现此微腔波导结构具有较高的透射率,可以在特定波长位置实现滤波效果。基于上述理论设计三路、四路弯曲波导结构,实现表面等离子体波在弯曲波导处的分束、全反射等定向传输特性。该结构具有极强的光束缚效应,在纳米尺度对光进行传输,解决了光信号的反射、传输问题,在光集成、光通讯、光信息处理等方面有较好的应用前景。 The metal-insulator-metal (MIM) based bending waveguide structures with a quadrant ring resonator (QRR) are presented in theory. Those structures can control the directional propagation of plasmonic waves in waveguide cross junctions. The transmission of various wavelengths in straight waveguide with a quadrant ring resonator based on finite-different time-domain (FDTD) method is studied, and optical properties of the barrier thickness between quadrant ring resonator and communication waveguides are also studied. The simulation results demonstrate that the waveguide structure can achieve higher transmission, and achieve the filtering effects at the specific wavelength positions. In addition, three and four waveguide branches structures are proposed. The structures can obtain the effects of directional transmission of surface plasma wave in the waveguide bends, such as beam splitting, total reflection. The structures have the effects of strong beam binding, nanometer-scale transmission, and can solve the problem of signal transmission and reflection. Those design structures have an important application prospects in optical integration, communication, information processing.
机构地区 江南大学理学院
出处 《中国激光》 EI CAS CSCD 北大核心 2015年第2期320-326,共7页 Chinese Journal of Lasers
基金 国家自然科学基金(11347196 11347214 61178032) 江苏省自然科学基金(BK2012548 BK20140167 BK20130162) 中央高校自主科研基金(JUSRP211A20) 国家大学生创新训练计划项目(201410295027)
关键词 光学器件 表面等离子体金属-介质-金属结构 光波导 光学谐振腔 optical devices surface plasmons metal-insulator-metal structure optical waveguide optical resonator
  • 相关文献

参考文献22

  • 1Hansik Y, Lee S Y, Kim K Y, et al: Hybrid states of propagating and localized surface plasmons at silver core/silica shell nanocubes on a thin silver layer[J]. Opt Express, 2014, 22(7): 8383-8395.
  • 2Liu Liu, Han Zhanghua, Sailing H. Novel surface plasmon waveguide for high integration[J]. Opt Express, 2005, 13(17): 6645-6650.
  • 3Wang Bing, Teng Jinghua, Yuan Xiaocong. Inelastic scattering of surface plasmons in scillating metallic waveguides[J]. Applied Physics Letters, 2011,98(26): 263111.
  • 4Helsey K N. Plasmons: Theory and Applications[M]. New York: Nova Science Publishers, 2010. 235-239.
  • 5Yao Xiankun. Wavelength demuhiplexing in metal-insulator-metal plasmonic waveguides[J]. Modern Physics Letters B, 2014, 28 (4): 1450025.
  • 6Ren Fanghui, Jeremy C, Wang Xiangyu, et al: Enhancing surface plasmon resonances of metallic nanoparticles by diatom biosilica [J]. Opt Express, 2013, 21(13): 15308-15313.
  • 7Neutens P, Lagae L, Borghs G, et al: Plasmon filters and resonators in metal-insulator-metal waveguides[J]. Opt Express, 2012, 20 (4): 3408-3423.
  • 8Moreno E, Rodrigo S G, Bozhevolnyi S I, et al: Guiding and focusing of electromagnetic fields with wedge plasmon polaritons[J]. Physical Review Letters, 2008, 100(2): 023901.
  • 9张高峰,杨荣草,薛文瑞.Sine形表面等离子滤波器在可见光波段的滤波特性[J].中国激光,2014,41(s1):105004.
  • 10Little B E, Chu S T, Haus H A, et al: Microring resonator vhannel fropping gilters[J]. Journal of Lightwave Technology, 1997,15(6): 998-1005.

二级参考文献13

  • 1H Raether. Surface Plasmons on Smooth Surfaces[M], Berlin: Springer Berlin Heidelberg, 1988.
  • 2W L Barnes, A Dereux. T W Ebbesen. Surface plasmon subwavelengthoptics[J]. Nature. 2003, 424(6950): 824-830.
  • 3T Xu, Y Zhao, D Gan, et al: Directional excitation of surface plasmons with subwavelength slits[J]. Applied Physics Letters, 2008, 92(10): 101501.
  • 4Q Gan, B Guo, G Song, et al: Plasmonic surface-wave splitter [J]. Applied Physics I.etters, 2007. 90(16) : 161130.
  • 5Q Gan, Z Fu, Y J Ding, et al: Bidirectional subwavelength slit splitter for THz surface plasmons[J]. Opt Express, 2007. 15 (26): 18050-18055.
  • 6Z Fu, Q Dan, K Gao, et al: Numerical Investigalion of a bidirectional wave coupler based on plasmonic Bragg gratings in the near infrared domain[J]. J Lightwave Technology, 2008, 26 (22), 3699-3703.
  • 7S B Choi, D J Park, Y K Jeong, et al: Directional control of surface plasmon polariton waves propagating thrnugh an asymmetric Bragg resonator[J]. Applied Physics I.etters. 2009. 94(6): 063115.
  • 8H Caglayan, E Ozbay. Surface wave splitter based on metallic gratings with sub-wavelength aperture[J]. Opt Express. 2008. 16(23), 19091-19096.
  • 9F LBpeTejeira, S G Rodrigo, L Martin-Moreno, et al: Efficient unidirectional nanoslit couplers for surface plasmons[J]. Nature Physics, 2007, 3(5): 324-328.
  • 10G Lerosey, D F P Pile, P Matheu, el al: Controlling the phase and amplitude of plasmon sources at a subwavelength scale[J] Nano Letters, 2008, 9(1): 327-331.

共引文献15

同被引文献75

  • 1Wang Bing, Teng Jinghua, Yuan Xiaocong. Inelastic scattering of surface plasmons in scillating metallic waveguides[J]. Appl Phys Lett, 2011, 98(26): 263111.
  • 2Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.
  • 3Neutens P, Van Dorpe P, De Vlaminck I, et al.. Electrical detection of confined gap plasmons in metal-insulator-metal waveguides[J]. Nat. photonics, 2009, 3: 283-286.
  • 4Yao Xiankun. Wavelength demultiplexing in metal-insulator-metal plasmonic waveguides[J]. M od Phys Lett B, 2014, 28(4): 1450025.
  • 5Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nat Photonics, 2010, 4(2): 83-91.
  • 6Matsuzaki Y, Okamoto T, Haraguchi M, et al.. Characteristics of gap plasmon waveguide with stub structures[J]. Opt Express, 2008, 16(21): 16314-16325.
  • 7Lin Xianshi, Huang Xuguang. Tooth-shaped plasmonic waveguide filters with nanometeric sizes[J]. Opt Lett, 2008, 33 (23): 2874-2876.
  • 8Xia Xiushan, Wang Jicheng, Liang Xiuye, et al.. A dual-way directional surface-plasmon -polaritons launcher based on asymmetric slanted nanoslits[J]. J Mod Opt, 2015, 62(5): 358-363.
  • 9Zhu Qionggan, Tan Wei, Wang Zhiguo. The combined effect of side-coupled gain cavity and lossy cavity on the plasmonic response of metal-dielectric-metal surface plasmon polariton waveguide[J~. J Phys, 2014, 26(25): 255301.
  • 10Zhu W, Rukhlenko I D, Premaratne M. Manipulating energy flow in variable-gap plasmonic waveguides[J]. Opt Lett, 2012, 37(24): 5151-5153.

引证文献10

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部