期刊文献+

基于饮片切面图像纹理特征参数的中药辨识模型研究 被引量:20

Research on Identification Model of Chinese Herbal Medicine by Texture Feature Parameter of Transverse Section Image
下载PDF
导出
摘要 目的:建立基于切面图像纹理特征参数的辨识模型,探讨中药饮片自动识别的可行性。方法:基于中药饮片切面图像的灰度共生矩阵和灰度梯度共生矩阵,选取18种中药材不同样本图像的26个纹理特征参数,分别建立训练集和测试集。利用最小协方差行列式MCD方法对训练集进行离群值剔除处理。采用朴素贝叶斯及BP神经网络2种建模方法和十折交叉验证,建立18种中药材的判别模型。结果:在提取的26个纹理特征参数的基础上,利用MCD方法剔除训练集的离群值后,用BP神经网络建立的判别模型判正率达到90%,说明效能良好。结论:将建立的辨识模型用于中药饮片的自动识别具有可行性,为中药直观鉴别的定量化、科学化以及客观化提供了一套新的技术手段。 This study was aimed to establish the classification method of Chinese herbal medicine based on feature parameters extracted from images of herbal transverse section, in order to explore the feasibility of automatic identi-fication method of herbal medicine. The extracted 26 parameters of 18 herbal medicine images by gray-level co-oc-currence matrix and grayscale gradient matrix were used as the basic data set. And the minimum covariance determi-nant (MCD) was used to delete the outliers. A total of 18 identification models were established using the native Bayes method and BP neural network methods. The results showed that the average correct rates of models were 90%. It was concluded the feasibility of using these models in the establishment of the automatic identification method of herbal medicines. It provided new technologies for the quantitative, scientific and objective identification of Chinese herbal medicine.
出处 《世界科学技术-中医药现代化》 北大核心 2014年第12期2558-2562,共5页 Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology
基金 国家自然科学基金委青年基金项目(81102800):基于辩状论质思想的中药质量性状评价数学模型研究 负责人:陶欧 教育部新世纪优秀人才支持项目(NCET-11-0605):中药信息融合与利用 负责人:王耘
关键词 中药饮片 纹理特征参数 分类模型 最小协方差行列式 BP神经网络 Chinese herbal medicine parameters of texture feature classification model minimum covariance determinant BP neural network
  • 相关文献

参考文献13

二级参考文献40

  • 1董卫军,周明全,耿国华.基于综合特征图像检索技术研究[J].计算机应用与软件,2005,22(11):34-35. 被引量:19
  • 2王克奇,陈立君,王辉,谢永华.基于空间灰度共生矩阵的木材纹理特征提取[J].森林工程,2006,22(1):24-26. 被引量:18
  • 3梅瑞仙,殷宁,张帝树.木材表面纹理强化工艺的研究[J].北京林业大学学报,1997,19(1):8-12. 被引量:13
  • 4Peter Howarth, Stefan M Roger. Evaluation of Texture Features for Content-Based Image Retrieval [A]. Third International Conference, CIVR [C]. 2004. 326-334.
  • 5Hafner J, Sawhney H S, et al. Efficient color histogram indexing for quadratic form distance functions [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17 (7): 729-736.
  • 6Leveque.EEMCO guidance for the assessment of skin topography[J].Journal of European Academy of Dermatology and Venereology,1999,12:103-114.
  • 7Cook TH. Profilometry of skin-a useful tool for the substantiation of cosmetic efficacy [J]. Soc Cosmet Chen,1980,5:108-112.
  • 8Corcuff P. Image analysis is of the cutaneous microrelief. Bioeng [J]. Skin Newslett, 1982, 4:16-31.
  • 9Hayashiet S. Changes in facial wrinkles by aging and application of cosmetics[C]. In:Proc IFSCC Congress, Yokohama, 1992, 733-740.
  • 10曾玉娟.[D].中国科学院半导体研究所工学,1999:25-31.

共引文献60

同被引文献217

引证文献20

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部