期刊文献+

基于高斯变异的人工萤火虫算法在云计算资源调度中的研究 被引量:8

Study of artificial glowworm algorithm based on Gauss mutation in resource scheduling of cloud computing
下载PDF
导出
摘要 如何合理地分配云计算资源一直都是研究的热点。建立云计算环境下的资源调度模型,通过人工萤火虫算法个体最优与云计算节点资源分配对应起来,在算法中引入高斯变异算法,通过与经典函数比较,优化后的算法在搜索精度上以及收敛速度上有了很大的提高。通过在Cloud Sim平台上与经典智能算法的比较,该算法能够有效地提高云计算中的资源调度性能,缩短任务完成的时间,提高系统整体处理能力。 How to equitably distribute resource allocation of cloud computing has always been a hot spot of study. This paper first established resource scheduling model under environment of cloud computing and introduced into Gauss mutation algorithm through corresponding particle optimization of artificial glowworm algorithm with node resource allocation of cloud computing; it also had great improvement in searching precision and rate of convergence by algorithm after comparative optimization with classical function. Through comparing with classical intelligence algorithm in CloudSim platform, this algorithm can effectively improve performance of resource scheduling in cloud computing, shorten time of completing task and promote integral proces- sing capacity of system.
出处 《计算机应用研究》 CSCD 北大核心 2015年第3期834-837,共4页 Application Research of Computers
基金 国家自然科学基金青年基金资助项目(51309004) 安徽省自然科学基金资助项目(KJ2013B100)
关键词 云计算 高斯变异 人工萤火虫算法 cloud computing Gauss mutation artificial glowworm algorithm
  • 相关文献

参考文献14

二级参考文献144

共引文献633

同被引文献88

  • 1MICHAEL A, ARMANDO F, REAN G, et al. Above the clouds., a Berkeley view of cloud computing[M]. Berkeley: University of California, 2009:1 - 23.
  • 2BRAUN T D, SIEGEL H J, BECK N. A comparsion of eleven static heristies for mapping a class of independent tasks onto heterogonous distributed computing systems[J]. Parallel and Distributed Computing, 2001,61 ( 1 ) : 810 - 837.
  • 3ISARD M, PRABHAKARAN V, CURREY J, et al. Fair scheduling for distributed computing clusters [ C]// Proceedings of the 22nd ACM SIGOPS Symposium on Operating Systems Principles, New York: ACM, 2009:261 - 276.
  • 4违鸣.云计算下计算能力调度算法的研究和改进[D].太原:太原理工大学,2012.
  • 5HOLLAND J H. Adaptation in Nature and Artificial Systems[M]. Boston:MIT Press, 1992.
  • 6JOANNA K, FATOS X, MARCIN B. Secure and task abortion aware GA-based hybridmetaheuristics for grid scheduling[J]. Computer Science, 2010,1 : 526 - 535.
  • 7SEAN M, ZHI L, SUBBAJYOTI B. Cloud computing-the business perspective[J]. Decision Support Systems, 2011,51(1):176 - 189.
  • 8DORIGO M, MANIEZZO V, COLOMI A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on System, Man and Cybernetics, 1996,26 (1) : 29 - 41.
  • 9KENNEDY J, EBERHART R. C. Particle Swarm Optimization [C] // Proceedings of the IEEE International Conference on Neural Networks, Piseataway: IEEE, 1995:1942- 1948.
  • 10PANDEY S, WU L, GURU M, et al. A particle swarm optimization-based heuristic for scheduling workflow application in cloud computing environments[C]// 24th IEEE International Conference on Advanced Information Networking and Applications, Piscataway. IEEE, 2010.1109- 1119.

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部