期刊文献+

受限空间油气热着火的简化机理与分析 被引量:3

Reduced Mechanism and Analysis of Thermal Ignition of Gasoline-Air Mixture in Confined Space
下载PDF
导出
摘要 油气热着火是导致油气火灾的重要原因之一,对油气热着火发生的反应机理研究具有重要的理论和现实意义.通过对正庚烷、异辛烷和C1~C4详细反应机理的模拟研究,得到3个主要结果:一是通过温度敏感性分析、路径分析等方法,获得了油气热着火简化机理,包含47个组分,100个基元反应;二是通过对简化机理的模拟分析发现,随着初始温度的增加,热着火的延迟时间减少,当初始温度小于850K时,延迟时间较长,而初始温度大于900K后,延迟时间相差不多;三是在相同温度和碳氢浓度下,组分浓度越均匀,延迟期越短,大分子浓度越大,延迟期越长,反应后温度越低,小分子浓度越大,反应越充分. Thermal ignition of gasoline-air mixture is one of important reasons for fire accident. So study on the reac- tion mechanism of gasoline-air mixture is of theoretical and practical significance. By the simulation study of n- heptane, iso-octane and C 1~C4 detailed reaction mechanism, three main results were obtained as follows. ①The simplified mechanism of thermal ignition of gasoline-air mixture, comprising 47 components and 100 reactions, was obtained by temperature sensitivity analysis and path analysis method. ②The thermal ignition delay time decreased with the increase of initial temperature through the simulation analysis of the simplified mechanism. When the initial temperature was lower than 850 K, the delay time was longer, and when the initial temperature was higher than 900 K, the delay time was basically unchanged. ③Under the same temperature and concentration of CH, the con- centration of the components was more uniform, and the delay period was shorter. Macromolecule concentration was greater, the delay time was longer and the temperature was lower after reaction. When small molecular concentration was greater, the reaction was more thorough.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2015年第1期20-27,共8页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(51276195) 重庆市基础与前沿计划研究资助项目(cstc2013jcyj A00006)
关键词 油气 热着火 敏感性分析 简化机理 延迟时间 反应路径 gasoline-air mixture thermal ignition sensitivity analysis reduced mechanism delay time reaction pathways
  • 相关文献

参考文献15

  • 1郑东,钟北京.异辛烷/正庚烷/乙醇三组分燃料着火的化学动力学模型[J].物理化学学报,2012,28(9):2029-2036. 被引量:15
  • 2Mehl Marco, Pitz William J. Kinetic modeling of gaso- line surrogate components and mixtures under engine conditions [J]. Proceedings of the Combustion Institute, 2011,33 : 193-200.
  • 3Battin-Leclerc F. Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates[J]. Progress in Energy and Combustion Science, 2008,34: 440-498.
  • 4Lu Xingcai, Yang Zheng, Zhou Xiaoxin, et al. Auto- ignition and combustion characteristics of n-butanol trig- gered by low- and high-temperature reactions of pre- mixed n-heptane [J]. Fuel, 2013,112: 1-7.
  • 5Ra Youngchul, Reitz Rolf D. A reduced chemical kinetic model for Ie engine combustion simulations with primary reference fuels [J]. Combustion and Flame, 2008, 155 : 713-738.
  • 6Mehl Marco, Pitz William J, Westbrook Charles K, et al. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions [J]. Proceedings of the Combustion Institute, 2011,33 : 193-200.
  • 7Wang Yifeng, Yao Mingfa, Zheng Zunqing. A semi- detailed chemical kinetic model of a gasoline surrogate fuel for internal combustion engine applications[J]. Fuel, 2013,113 : 347-356.
  • 8Caneino L R, Fikri M, Oliveira A A M, et al. Ignition delay times of ethanol-containing multi-component gaso- line surrogates:Shock-tube experiments and detailed modeling [J]. Fuel, 2011,90, 1238-1244.
  • 9郑东,张云鹏,钟北京.汽油替代燃料燃烧过程中多环芳烃生成的化学动力学模型[J].物理化学学报,2013,29(6):1154-1160. 被引量:8
  • 10李军,邵菊香,刘存喜,饶含兵,李泽荣,李象远.碳氢燃料热裂解机理及化学动力学模拟[J].化学学报,2010,68(3):239-245. 被引量:19

二级参考文献81

  • 1田水承,李新东,徐精彩.煤自燃环境及其影响因素[J].西安矿业学院学报,1994,14(2):107-111. 被引量:9
  • 2贾明,解茂昭.适用于HCCI发动机的异辛烷氧化的化学动力学模型(Ⅱ)——一个新的骨架机理[J].内燃机学报,2006,24(4):295-301. 被引量:25
  • 3邓军,程超,吴晓春.煤矿可燃性气体爆炸氧浓度的实验研究[J].煤矿安全,2007,38(6):5-7. 被引量:16
  • 4Edenhofer R, Lucka K. Low temperature oxidation of diesel-air mixtures at atmospheric pressure[J].Proceedings of the Combustion Institute, 2007,31(2) : 2947-2954.
  • 5Sato Y, Iwabuehi H, Groethe M, et al. Experiments on hydrogen deflagration[J]. Journal of Power Sources, 2006,159(1) : 144-148.
  • 6Caceres M O, Nicolis G, Budde C E. About the shift between the advanced and delayed thermal explosion times [J]. Chaos, Solitons & Fractals, 1995,6(2) :51-57.
  • 7Okoya S S. Disappearance of criticality in a branched-chain thermal explosion with heat loss[J].Combustion and Flame, 2006,144(3) :410-414.
  • 8Varatharajan B, Williams F A. Chemical-kinetic descriptions of high-temperature ignition and detonation of acetylene-oxygen-diluent systems[J]. Combustion and Flame, 2001,125 (5) : 624-645.
  • 9Varatharajan B, Williams F A. Brief communication ignition times in the theory of branched-chain thermal explosions[J]. Combustion and Flame, 2000,121(4) : 551-554.
  • 10Veser G. Experimental and theoretical investigation of H2 oxidation in a high-temperature catalytic microreactor[J]. Chemical Engineering Science, 2001,56(4) : 1265-1273.

共引文献75

同被引文献24

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部