期刊文献+

基于项目相关度的STI新群体冷启动推荐方法 被引量:1

Degree of Item Correlation Based STI for New Community Cold Start Recommendation
下载PDF
导出
摘要 针对推荐系统中相似偏好用户数量较少情况下的一类新群体冷启动问题开展研究,基于多元相关分析,对传统的尺度与平移不变(Scale and Translation Invariant,STI)的协同过滤推荐方法进行改进,提出一种基于项目相关度的STI推荐方法,以应对推荐系统中的新群体冷启动问题.在此基础上,基于Movie Lens数据集对所提出的方法进行了性能分析,结果表明,所提出的方法较Pearson方法及ST1N1方法在解决新群体冷启动推荐的过程中具有更高的推荐准确率. The cold start problem recently becomes a hot topic on Recommender systems ( or RS ) ,especially for new community cold start problem. The number of similar users for the new community cold start user is very low. It makes the traditional Collaborative Fil- tering ( or CF ) based recommendation method cannot meet the requirement of accuracy for new community recommendation. In this paper, a degree of item correlation based Scale and Translation Invariant ( or STI ) method is proposed to solve this problem. It com- bines the degree of item correlation and STI so as to predict the score of un-voted items for new community cold start user. The related experimental results show that,the method has a high recommendation accuracy.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第3期450-453,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金面上项目(71373125)资助 教育部博士点基金新教师基金项目(20113204120011)资助 教育部人文社会科学基金项目(10YJC790395)资助 江苏省高校哲学社会科学基金项目(2013SJB6300051)资助 国家级大学生实践创新训练计划项目(201310298025Z)资助
关键词 推荐系统 冷启动 新群体 项目相关度 尺度与平移不变 recommender system cold start new community problem degree of item correlation scale and translation invariant ( STI }
  • 相关文献

参考文献4

二级参考文献74

  • 1Gedimiinas Adomavicus,Alexander Tuzhilin.Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering,June 2005,17(6):734-749.
  • 2Linden G,Smith B,York J.Amazon.com recommendations:item-to-item collaborative filtering[J].IEEE Internet Computing,2003,7(1):76-80.
  • 3Miller B N,Albert I,Lam S K,et al.MovieLens unplugged:experiences with an occasionally connected recommender system[C].Proceeding of Int'l Conf.Intelligent User Interfaces,Miami,USA:2003,263-266.
  • 4Resnick P,Iacovou N,Suchak M,et al.Grouplens:an open architecture for collaborative filtering of netnews[C].Proceeding of the CSCW Conference,Chapel Hill,NC:1994,175-186.
  • 5Kim J W,Lee B H,Shaw M J,et al.Application of decision-tree induction techniques to personalized advertisements on Internet storefronts[J].International Journal of Electronic Commerce,2001,5(3):45-62.
  • 6Balabanovic M,Shoham Y.Fab:content-based,collaborative recommendation[J].Comm.ACM,1997,40(3):66-72.
  • 7Pazzani M.A framework for collaborative,content-based,and demographic filtering[J].Artificial Intelligence Rev.,Dec.1999,13:393-408.
  • 8Souvik Debnath,Niloy Ganguly,Pabitra Mitra.Feature weighting in content based recommendation system using social network analysis[C].Proceedings of WWW,Beijing,China:April,2008,pages 1041-1042.
  • 9http://www.movielens.umn.edu.
  • 10Pavlov D,Pennock D.A maximum entropy approach to collaborative filtering in dynamic,sparse,high-dimensional domains[C].Proceedings of 16th Ann.Conf.Neural Information Processing Systems (NIPS ′02),Canada:2002,1441-1448.

共引文献240

同被引文献19

  • 1OZSOY M G , POLAT F . Trust based recommendation systems [ C]//WWW 2008: Proceedings of the 17th International Confer- ence on World Wide Web. New York: ACM, 2013:1267 - 1274.
  • 2SHAMBOUR Q, LU JIE. A trust-semantic fusion-based recommen- dation approach for e-business applications [ J]. Decision Support Systems, 2012, 54( 1 ) : 768 - 780.
  • 3LI Y M, WU C T, LAI C Y. A social recommender mechanism for e-commerce combining similarity, trust, and relationship[ J]. Deci- sion Support Systems, 2013, 55(3):740-752.
  • 4CHOI K, SUH Y. A new similarity function for selecting neighbors for each target item in collaborative filtering[ J]. Knowledge-Based Systems, 2013, 37(1) : 146 - 153.
  • 5BOBADILLA J, ORTEGA F, HERNANDO A. A collaborative fil- tering similarity measure based on singularities [ J]. Information Processing and Management, 2011, 48(2) : 204 - 217.
  • 6黄创光,印鉴,汪静,刘玉葆,王甲海.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. 被引量:217
  • 7朱锐,王怀民,冯大为.基于偏好推荐的可信服务选择[J].软件学报,2011,22(5):852-864. 被引量:69
  • 8夏小伍,王卫平.基于信任模型的协同过滤推荐算法[J].计算机工程,2011,37(21):26-28. 被引量:10
  • 9王立才,孟祥武,张玉洁.上下文感知推荐系统[J].软件学报,2012,23(1):1-20. 被引量:179
  • 10范波,程久军.用户间多相似度协同过滤推荐算法[J].计算机科学,2012,39(1):23-26. 被引量:69

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部