期刊文献+

基于GA-PSO的粗糙集属性约简算法 被引量:8

A GA-PSO based attribute reduction algorithm for rough set
下载PDF
导出
摘要 属性约简是粗糙集合研究的重要内容之一。为了能够有效地获取决策表中属性最小相对约简,提出了一种基于GA-PSO的属性约简算法。该算法以条件属性对决策属性的支持度为基础,求解核属性,把所有的条件属性(除去核属性)加入粒子群算法的初始种群中,并用遗传算法对不满足适应度条件的粒子进行交叉变异操作。实验结果表明,该算法在加强局部搜索能力的同时保持了该算法全局寻优的特性,能够快速有效地获得最小相对属性集。 Attribute reduction is one of the main contents in rough set theory study. In order to achieve attribute reduction effectively,a GA-PSO based attribute reduction algorithm for rough set is proposed. According to the dependability of the decision attributes to the condition attributes, the proposed algorithm can calculate the core attributes. All the condition attributes except the core attributes are added to the initial population of the PSO (Particle Swarm Optimization) algorithm,and then the crossover and mutation operations of the genetic algorithm are performed on the particles that do not meet the fitness conditions. Experimental results show that the algorithm can enhance the local search ability as well as maintain the feature of global optimization, and calculate the minimum relative attribute set quickly and effectively.
出处 《计算机工程与科学》 CSCD 北大核心 2015年第2期397-401,共5页 Computer Engineering & Science
关键词 粗糙集 属性约简 GA-PSO rough set attribute reduction GA-PSO core
  • 相关文献

参考文献4

二级参考文献24

  • 1任永功,王杨,闫德勤.基于遗传算法的粗糙集属性约简算法[J].小型微型计算机系统,2006,27(5):862-865. 被引量:32
  • 2廖建坤,叶东毅.基于免疫粒子群优化的最小属性约简算法[J].计算机应用,2007,27(3):550-552. 被引量:17
  • 3Pawlak Z. Rough Set Theory and Its Applications to Data Analysis[J]. Cybernetics and System, 1998, 29(7): 661-668.
  • 4Wong S K M, Ziarko W. On Optimal Decision Rules in Decision Tables[J]. Bulletin of Polish Academy of Science, 1985, 33(11): 693-696.
  • 5Wang Xiangyang, Yang Jie, Teng Xiaolong. Feature Selection Based on Rough Sets and Particle Swarm Optimization[J]. Pattern Recognition Letters, 2007, 28(4): 459-471.
  • 6叶东毅,廖建坤.基于粒子群优化的最小属性约简算法[C]//第11届中国人工智能大会论文集北京:北京邮电大学出版社,2005:728-732
  • 7Sun Jun, Feng Bin, Xu Wenbo. Particle Swarm Optimization with Particle Having Quantum Behavior[C]//Proc. of Congress on Evolutionary Computation. Portland, OR, USA: [s. n.], 2004: 325-331.
  • 8Sun Jun, Xu Wenbo, Feng Bin. Adaptive Parameter Control for Quantum-behaved Particle Swarm Optimization on Individual Level[C]//Proc. of IEEE International Conference on Systems, Man and Cybernetics. Big Island, HI, USA: [s. n.], 2005: 3049-3054.
  • 9Liu Jing, Xu Wenbo, Sun Jun. Quantum-behaved Particle Swarm Optimization with Mutation Operator[C]//Proc. of the 17th IEEE International Conference on Tools with Artificial lntelligence. Hong Kong, China: IEEE Press, 2005.
  • 10Breiman L Friedman,H H R A,Stone C J.Classification Regression Trees [Z].Wadsworth International Group,1984.

共引文献59

同被引文献74

引证文献8

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部