期刊文献+

混料工艺对固相法合成LiNi_(0.5)Mn_(1.5)O_4电化学性能的影响 被引量:1

Effects of Mixing Process on the Electrochemical Properties of LiNi_(0.5)Mn_(1.5)O_4 Synthesized by Solid-phase Method
下载PDF
导出
摘要 以Li2CO3、MnO2、NiO为原料,用固相法合成了5V尖晶石结构的LiNi0.5Mn1.5O4正极材料;并对合成的样品进行XRD、SEM及电化学性能测试,研究不同混料工艺对固相法合成的高电压正极材料LiNi0.5Mn1.5O4电化学性能的影响。结果表明:采用高速球磨混料方式易获得具有优异电化学性能的样品;球磨时间一定,随着球磨转速增加,合成样品的比容量呈先增加后减小的趋势;转速为350r/min时合成的LiNi0.5Mn1.5O4的电化学性能最佳,0.2C倍率下,首次放电比容量为125.3 mAh/g,100次充放电循环后放电比容量为118.7 mAh/g,容量保持率为94.7%。 5 V spinel structured LiNi0.5Mn1.5O4 cathode material was synthesized by solid-phase method, while Li2CO3, MnO2 and NiO was used as raw materials. In order to study effects of different mixing process on electrochemical properties of LiNi0.5Mn1.5O4 synthesized by solid-phase method, the synthesized samples were tested by XRD, SEM and electrochemical measurement. Results showed that:the sample which is obtained by high-speed ball-milling has better electrochemical properties. When ball-milling time is settled, with the increase of ball milling speed, the specific capacity of the samples increases first and then starts to drop. When ball-milling speed is 350 r/min, LiNi0.5Mn1.5O4 has the optimum electrochemical performance,as its initial specific discharge capacity is 125.3 mAh/g (0.2C), and the specific discharge capacity is 118.7 mAh/g after 100 charge-discharge cycles, with a capacity retain ratio up to 94.7%.
出处 《材料导报》 EI CAS CSCD 北大核心 2015年第4期30-33,共4页 Materials Reports
基金 珠海市战略性新兴产业重大项目(珠科工贸信字[2011]29号) 珠海市产学研合作专项(2011A05101003) 广东省科技厅计划项目(2009A060800011)
关键词 锂离子电池 高电压材料 固相法 混料工艺 电化学性能 lithium-ion batteries, high voltage material, solid phase method, mixing process, electrochemical properties
  • 相关文献

参考文献9

  • 1Xiao W, Liu W, Mao X, et al. Chemical mixing in moltensalt for preparation of high-performance spinel lithium manganese oxides: Duplication of morphology from nanostructured MnOz precursors to targeting materials[J]. Electrochim Acta,2013,88:756.
  • 2Tarascon J M, Guyomard D. Li metal-free rechargeable batteries based on Lil+x Mn204 cathodes and carbon anodes[n J Electrochem Soc, 1991,138(10) : 2864.
  • 3Tarascon J M. Key challenges in future Li-battery research[n Philos Trans Royal Soc A,2010,368(923) :3227.
  • 4Seyyedhosseinzadeh H, Mahboubi F, Azadmehr A. Diffusion mechanism of lithium ions in LiNio. 5 Mn1.5 04[J]. Electrochim Acta, 2013,108: 867.
  • 5Yang T, Sun K, Lei Z, et al. The influence of Li sources on physical and electrochemical properties of LiNio.5 Mn., 5 04 cathode materials for lithium-ion batteries[J]. J Solid State Electrochem, 2011,15(2): 391.
  • 6Wang y, Yang G, Yang Z, et al. High power and capacity of LiNio. 5 Mn., 5 04 thin films cathodes prepared by pulsed laser deposition[J]. Electrochim Acta,2013,102:416.
  • 7Caballero A, Hernan L, Melero M, et al. LiNio.5 Mn1.5 O. thick-film electrodes prepared by electrophoretic deposition for use in high voltage lithium-ion batteries[J]. J Power Sources,2006,158(1):583.
  • 8Kunduraci M, Amatucci G G. Synthesis and characterization of nanostructured 4. 7 V Li, Mn, 5 Nio.5 04 spinels for highpower lithium-ion batteries[J]. J Electrochem Soc, 2006, 153(7) :A1345.
  • 9Idemoto Y, Narai H, Koura N. Crystal structure and cathode performance dependence on oxygen content of Lilvln., 5- Ni-, 5 04 as a cathode material for secondary lithium batteries[J]. J Power Sources, 2003,119: 125.

同被引文献146

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部