期刊文献+

半动态集成选择分类方法 被引量:1

Semi-dynamic Integration Selection Classification Method
下载PDF
导出
摘要 在集成学习领域,传统的动态集成选择需要为每一个样本选择子分类器组成集成分类器,这极大地增加了计算复杂度。针对这一问题,提出一种新的半动态集成选择方法。该方法分为两阶段,第一阶段为所有的测试样本选择最好的个体分类器组成一个集成分类器,第二阶段从剩余的个体分类器集合中为当前测试样本动态地选择子分类器组成一个集成分类器。最终的分类结果通过融合两阶段得到集成分类器的结果得到。通过对UCI数据测试的结果表明,该算法不仅能取得较好的分类性能,而且能极大地降低计算复杂度。 Traditional Dynamic Ensemble Selection ( DES) in ensemble learning needs to select individual classifiers for all the test samples.However, it leads to highly computational cost.Due to this issue, a new Semi Dynamic Ensemble Selection ( Semi-DES) strategy is proposed in this paper, which consists of two stages.Individual classifiers are selected for all the test samples in the first stage.In the second stage, the classifiers for each test sample are selected dynamically.The final result is obtained by integrating the output of the two stages.The experimental results on UCI data set demonstrate the proposed method can obtain a better classification performance.Moreover, Semi-DES can reduce the computational cost greatly.
作者 李瑞 袁小玲
出处 《计算机与现代化》 2015年第2期48-51,共4页 Computer and Modernization
关键词 集成学习 选择性集成 动态集成选择 分类 ensemble learning selective ensemble dynamic ensemble selection classification
  • 相关文献

参考文献20

  • 1Marques A I, Garcia V, Sanchez J S.Two-level classifier ensembles for credit risk assessment[J].Expert Systems with Applications, 2012,39(12):10244-10250.
  • 2Michelangelo Paci, Loris Nanni, Stefano Severi.An ensemble of classifier based on different texture descriptors for texture classification [J].Journal of King Saud University-Science, 2013,25(3):235-244.
  • 3Moumita Roy, Susmita Ghosh, Ashish Ghosh.A novel approach for change detection of remotely sensed images using semi-supervised multiple classifier system[J].Information Science, 2014,269(10):35-47.
  • 4慕昱,夏虹,刘永阔.基于集成学习的核电站故障诊断方法[J].原子能科学技术,2012,46(10):1254-1258. 被引量:5
  • 5刘培,杜培军,谭琨.一种基于集成学习和特征融合的遥感影像分类新方法[J].红外与毫米波学报,2014,33(3):311-317. 被引量:11
  • 6Mordelet F, Vert J P.A bagging SVM to learn from positive and unlabeled examples[J].Pattern Recognition Letters, 2014,37(1),201-209.
  • 7李明方,张化祥.针对不平衡数据集的Bagging改进算法[J].计算机工程与应用,2010,46(30):40-42. 被引量:12
  • 8Nicolas Garcia-Pedrajas, Aida de Haro-Garcia.Boosting instance selection algorithm[J].Knowledge-based Systems, 2014,67(9):342-360.
  • 9于玲,吴铁军.集成学习:Boosting算法综述[J].模式识别与人工智能,2004,17(1):52-59. 被引量:89
  • 10Le Zhang, Ponnuthrai Nagaratnam Suganthan.Random Forest with ensemble of feature spaces[J].Pattern Recognition, 2014,47(10):3429-3437.

二级参考文献178

  • 1刘永阔,夏虹,谢春丽,阎昌琪.基于模糊神经网络的核动力装置设备故障诊断系统研究[J].核动力工程,2004,25(4):328-331. 被引量:15
  • 2王丽丽,苏德富.基于群体智能的选择性决策树分类器集成[J].计算机技术与发展,2006,16(12):55-57. 被引量:3
  • 3杨明.一种基于改进差别矩阵的属性约简增量式更新算法[J].计算机学报,2007,30(5):815-822. 被引量:112
  • 4Chawla N V, Bowyer K W.SMOTE: Synthetic minority oversampling technique[J].Journal of Artificial Intelligence Research, 2002,16:321-357.
  • 5Tomek I.Two modifications of CNN[J].IEEE Transactions on Systems, Man and Communications, SMC-6,1976: 769-772.
  • 6Laurikkala J.Improving identification of difficult small classes by balancing class distribution[C]//Proceedings of the 8th Conference on AI in Medicine Europe: Artificial Intelligence Medicine, 2001 : 63-66.
  • 7Breiman L.Bagging predictors[J].Machine Learning, 1996,24 ( 1 ) : 123-140.
  • 8Efon B, Tibshirani R J.An introduction to the Bootstrap[M].New York: Chapman Hall, 1993 : 1-430.
  • 9Kearns M,Valiant L.Cryptographic limitation on learning Boolean formulae and finite automata[C]//Proceedings of the 21st Annual ACM Symposium on Theory of Computing.New York, NY:ACM Press, 1989:433-444.
  • 10Spackman K A.Signal detection theory:Valuable tools for evaluating inductive leaming[C]//Proceedings of the Sixth International Workshop on Machine Learning, 1989.

共引文献252

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部