期刊文献+

基于均衡更新蚁群算法的飞机排序调度 被引量:2

A Balanced Update Ant Colony Optimization for Aircraft Arrival Sequencing and Scheduling
下载PDF
导出
摘要 飞机排序调度问题是空中交通管制的一个关键问题,本文在给出飞机排序调度模型的基础上,提出一种均衡更新蚁群算法,利用当前解与全局最优解的差异来均衡地更新信息素,增强算法的全局搜索能力,从而生成更优解。实验结果表明,均衡更新蚁群算法求解飞机排序调度问题时,能用较短时间求出优于对比算法的结果,其性能可以提高12.9%,有助于空中交通管制人员根据实时情况安排合适的飞机着陆顺序。 Aircraft arrival sequencing and scheduling ( ASS) is a key problem of air traffic control ( ATC) .According to the ASS model, a balanced update ant colony algorithm (BUACO) is proposed in this paper.BUACO balanced update the pheromone and enhance the global search ability of the algorithm by taking advantage of the difference between the current solution and the global optimal solution, in order to generate a better solution.The experiments show that BUACO’ s performance can be increased by 12.9%with a shorter computation time than the comparison algorithms when solving ASS problem, which is conductive to arrange a suitable flight landing sequence based on real-time situation for ATC.
出处 《计算机与现代化》 2015年第2期57-61,共5页 Computer and Modernization
基金 国家自然科学基金资助项目(41301407) 江苏省自然科学基金资助项目(BK20130819)
关键词 飞机排序调度 蚁群算法 均衡更新 实际载客量 aircraft arrival sequencing and scheduling ant colony optimization balanced update actual seating passengers
  • 相关文献

参考文献17

  • 1Zhan Zhi-hui, Zhang Jun, Li Yun, et al.An efficient ant colony system based on receding horizon control for the aircraft arrival sequencing and scheduling problem[J].IEEE Transactions on Intelligent Transportation Systems, 2010,11(2):399-412.
  • 2Hu Xiao-bing, Di Paolo E.Binary-representation-based genetic algorithm for aircraft arrival sequencing and scheduling[J].IEEE Transactions on Intelligent Transportation Systems, 2008,9(2):301-310.
  • 3Hu Xiao-bing, Chen Wen-hua.Genetic algorithm based on receding horizon control for arrival sequencing and scheduling[J].Engineering Applications of Artificial Intelligence, 2005,18(5):633-642.
  • 4Robinson J E, Davis T J, Isaacson D R.Fuzzy reasoning-based sequencing of arrival aircraft in the terminal area[C]// AIAA Guidance, Navigation and Control Conference.1997:1-11.
  • 5Hu Xiao-bing, Di Paolo E A.A ripple-spreading genetic algorithm for the aircraft sequencing problem[J].Evolutionary Computation, 2011,19(1):77-106.
  • 6Psaraftis H N.A dynamic programming approach for sequencing groups of identical jobs[J].Operations Research, 1980,28(6):1347-1359.
  • 7Zhao Xiuli, Guo Yanchi.Study on GRAPS-ACO algorithm for irregular flight rescheduling[C]// IEEE 2012 International Conference on Computer Science & Service System (CSSS).2012:266-269.
  • 8刘洪,杨红雨,彭莉娟.基于分组的MPS进近航班着陆调度算法研究[J].电子科技大学学报,2013,42(4):615-620. 被引量:3
  • 9赵嶷飞,朱潇,王红勇.终端区飞机排序的人工蜂群算法[J].科学技术与工程,2013,21(31):9258-9262. 被引量:6
  • 10冯兴杰,孟欣.基于免疫粒子群优化算法的航班着陆调度研究[J].计算机工程,2012,38(13):273-275. 被引量:7

二级参考文献57

共引文献34

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部