期刊文献+

跟随变异粒子扰动变化的惯性权重PSO算法 被引量:3

Inertia Weight Particle Swarm Optimization Algorithm with Mutation Particle Disturbance Changes
下载PDF
导出
摘要 针对困扰粒子群算法"早熟"和收敛慢的2大难题,提出了一种跟随变异粒子扰动变化的惯性权重策略,将粒子群体一致性变化趋势与粒子变异操作相关联,以此来增加粒子的多样性;根据粒子变异程度的大小对惯性权重作出相应调整,使粒子在提高全局寻优能力的同时,又很好地改善了收敛精度和收敛速度,避免因惯性权重单边非线性变化而导致粒子群全局寻优能力稳定性不佳的问题。仿真对比表明,改进的算法较好地避开了局部最优解的干扰问题,具有收敛速度快、寻优精度高等优势。 Aiming at the problems of the particle swarm algorithm "premature"and slow convergence,the inertia weight adjustment strategy with the mutation particles disturbance change was presented. In order to increase the diversity of the particles,the consistent of the particles group changing tendency was related with the particle mutation. The inertia of the weight of the particles was put forward with a corresponding adjustment according to the degree of variation the mutation particles,and the global searching ability of the particles is not only improved,but also that the convergence precision and speed of the particles are advanced,the poor stability problem of the particles swarm optimization ability,which is generated due to the inertia weight unilateral nonlinear change,is avoided. Simulation results show that the improved algorithm has the advantages of fast convergence speed,high precision optimization and so on.
机构地区 海军工程大学 [
出处 《四川兵工学报》 CAS 2015年第1期106-110,共5页 Journal of Sichuan Ordnance
基金 军队研究生课题(2011JY002-422)的资助
关键词 变异粒子 惯性权重 粒子群算法 mutation particle inertia weight particle swarm optimization
  • 相关文献

参考文献12

二级参考文献104

共引文献179

同被引文献33

  • 1杨文国,郭田德.求解最小Steiner树的蚁群优化算法及其收敛性[J].应用数学学报,2006,29(2):352-361. 被引量:19
  • 2金慧敏,马良,王周缅.欧氏Steiner最小树问题的智能优化算法[J].计算机工程,2006,32(10):201-203. 被引量:17
  • 3徐宁,洪先龙.超大规模集成电路物理设计理论与算法【M].北京:清华大学出版社,2009.
  • 4FRANK K HWANG, DANA S, RICHARDS P W. The Steiner tree problem [ M ]. Netherlands:North-Holland, 1992.
  • 5ZHANG Y H, C HU C. GDRouter: Interleaved global routing and detailed routing for ultimate routability [ C ]//Design Automation Conference( D AC ), 2012 49th AC M/EDAC/IEEE. San Francisco: IEEE Press, 2012: 597 -602.
  • 6HUANG T W, HOT Y. A two-stage ILP-based droplet routing algorithm for pin-constrained digital microfluidic biochips [J ]. IEEE transactions on computer-aided design of integrated circuits and systems, 2011,30 (2) :215-228.
  • 7ZHANG Y, CHU C. Regular route:an efficient detailed router with regular routing patterns [C ]//International Symp on Physical Design, March 27-30,2011. California, 2011 : 146-151.
  • 8CLERC M, KENNEDY J. The particle swarm-explosion, stability and convergence in a multidimensional complex space [J]. IEEE transactions on evolutionary computation, 2002,6( 1 ) : 58-73.
  • 9KHAN A, LAHA S, SARKAR S K. A novel particle swarm optimization approach for VLSI routing [C]//Advance Computing Conference(IACC ), 2013 IEEE 3rd International. Ghaziabad : IEEE Press, 2013 : 258-262.
  • 10KENNEDY J S. Improving particle swarm performance with cluster analysis [ C ]//Proceedings of the Congress on Evolutionary Computing. Piscatawat,NJ,2000:1 507-1 512.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部