期刊文献+

基于工艺参数内在关联的炼化设备故障趋势预测方法研究 被引量:1

Study on refining equipment fault trend prediction method based on correlation between technological parameters
原文传递
导出
摘要 为提高炼化过程的安全性,有必要对工艺过程参数故障趋势进行预测及关联验证。利用特征数据分割方法提取工艺参数的特征点与特征线段,对数据分割片段进行线性趋势拟合,通过分割片段趋势结合规律得到趋势预测结果;根据炼化工艺参数的内在关联,研究炼化过程中工艺参数的拟合关系,对故障趋势预测结果进行验证,通过关联参数验证步骤确定预测结果的可信度。研究结果表明:该方法通过对工艺参数的分割、拟合和预测,得到系统的故障趋势,与现场数据相符。 For improving the safety in refining process, it is a must to predict fault trends of process parameters. Considering problems of destroying integrity of data unit and data isolation in traditional trend prediction methods, fitting relationships between process parameters were studied. A characteristic data partitioning algorithm based on internal relationship between refining technologic parameters was worked out. Combined with warning information, the method was used to analyze and predict possible fault trend. Using the method, a case study was made on a reflux tank in a certain refinery in China. It was shown that fault trend prediction result of tank conforms to the field data.
出处 《中国安全科学学报》 CAS CSCD 北大核心 2014年第12期70-75,共6页 China Safety Science Journal
基金 国家自然科学基金资助(51104168) 教育部新世纪优秀人才支持计划资助(NCET-12-0972) 北京市自然科学基金资助(3132027) 中国石油大学(北京)科研基金资助(YJRC-2013-35) 北京市优秀博士学位论文指导教师科技项目(YB20111141401) 中国石油化工股份有限公司科学研究与技术开发项目(P14004)
关键词 炼化 工艺参数 数据分割 趋势拟合 故障趋势预测 refining process data data splitting trend comparability fault trend prediction
  • 相关文献

参考文献15

二级参考文献123

共引文献167

同被引文献18

  • 1ZHAO Chunhui, YAO Yuan, GAO Furong, et al. Statistical analysis and online monitoring for multimode processes with between mode transitions[J].Chemical Engineering Science, 2010, 65(22): 5 961-5 975.
  • 2ZHAO Shijian, ZHANG Jie, XU Yongmao. Monitoring of processes with multiple operating modes through multiple principal component analysis models[J].Industrial and Engineering Chemistry Research,2004,43(22):7 025-7 035.
  • 3ZHAO Shijian, ZHANG Jie, XU Yongmao. Performance monitoring of processes with multiple operating modes through multiple PLS models [J]. Journal of Process Control, 2006, 16(7):763-772.
  • 4DOAN X T, SRINIVASAN R. Online monitoring of multiphase batch processes using phase-based multivariate statistical process control[J].Computers & Chemical Engineering,2008,32(1/2):230-243.
  • 5YU Jie, QIN Sizhao. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models[J]. AICHE Journal,2008,54(7): 1 811-1 829.
  • 6YU Jie, QIN Sizhao. Multiway Gaussian mixture model based multiphase batch process monitoring[J]. Industrial and Engineering Chemistry Research,2009,48(18):8 585-8 594.
  • 7CHOI S W, PARK J H, LEEIB. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis[J]. Computers & Chemical Engiaeering,2004,28(8): 1 377-1 387.
  • 8YUAN Xiaofeng, GE Zhiqiang, SONG Zhihuan. Soft sensor model development in multiphase/multimode processes based on Gaussian mixture regression[J]. Chemometrics & Intelligent Laboratory Systems,2014,138(1):97-109.
  • 9JACKSON J E, MUDHOLKAR G S. Control procedures for residuals associated with principal component analysis[J].Technometrics, 1979,21(3):341-349.
  • 10ZHAO Chunhui, WANG Fuli, LU Ningyun, et al. Improved batch process monitoring and quality prediction based on multiphase statistical analysis[J]. Industrial and Engineering Chemistry Research,2008,47(3):835-849.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部