期刊文献+

基于随机森林的精神分裂症血清代谢组学研究 被引量:3

Serum metabolic profiling of schizophrenia based on random forest
原文传递
导出
摘要 目的探讨随机森林对精神分裂症患者和健康对照的血清代谢组学数据的分类能力,并筛选出差异代谢物。方法病例组为50例精神分裂症患者,对照组为62例健康个体,收集他们的血清进行代谢组学检测,然后用随机森林对数据进行分类,用OOB误差率估计、五折交叉验证评价分类效果,借助随机森林中变量重要性评分(VIM)获得重要的差异代谢物。结果随机森林对病例组和对照组的血清代谢组学数据分类效果较好。病例组错分率为4.0%,对照组错分率为1.6%。OOB误差率估计为2.68%,五折交叉验证ROC曲线下面积为0.99,并根据VIM筛选出15个重要的差异代谢物。结论将液相色谱-质谱代谢组学技术与随机森林相结合,能够筛选出有潜在临床应用价值的代谢物,可用于代谢组学研究。 Objective To explore the classification ability of random forest in the serum metabolic profiling of schizo-phrenia patients and healthy controls and to select significant metabolites.Methods The case group consisted of 50 patients with schizophrenia and control group consisted of 62 healthy individuals.The serum samples of case and control groups were collected and detected by RRLC-QTOF/MS platform.Random forest was used to classify the serum metabol-ic data in case and control groups.OOB estimate of error rate and 5 fold cross validation were used to evaluate the classi-fication ability.In addition,variable importance measure of random forest was adopted to select important metabolites. Results Schizophrenia and control serum metabolic data could be classified well using the method of random forest.The misclassification rates in case and control groups were 4.0% and 1.6% respectively,OOB estimate of error rate was 2.68%,and the area under the curve of ROC was 0.99.Furthermore,15 important metabolites were selected according to variable importance measure.Conclusion The combination of liquid chromatography-mass spectrum technology with random forest can select metabolites with potential clinical application value,and be used in the study of metabolomics.
出处 《山东大学学报(医学版)》 CAS 北大核心 2015年第2期92-96,共5页 Journal of Shandong University:Health Sciences
基金 国家自然科学基金(81273177) 山东省自然科学基金(ZR2013HQ056)
关键词 精神分裂症 代谢组学 随机森林 分类 变量筛选 Schizophrenia Metabolomics Random forest Classification Variable selection
  • 相关文献

参考文献20

  • 1He Y, Yu Z, Giegling I, et al. Schizophrenia shows a unique metabolomics signature in plasma[J]. Transl Psychiatry, 2012, 2: e149.
  • 2Ho PM, Rumsfeld JS. Cardiac risk management in severe mental illness[J]. Lancet, 2006, 367(9521): 1469-1471.
  • 3Mittal VA, Ellman LM, Cannon TD. Gene-environment interaction and covariation in schizophrenia: the role of obstetric complications[J]. Schizophr Bull, 2008, 34(6): 1083-1094.
  • 4Pishva E, Kenis G, van den Hove D, et al. The epigenome and postnatal environmental influences in psychotic disorders[J]. Soc Psychiatry Psychiatr Epidemiol, 2014, 49(3):337-348.
  • 5Xuan J, Pan G, Qiu Y, et al. Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action[J]. J Proteome Res, 2011, 10(12): 5433-5443.
  • 6Suhre K, Shin SY, Petersen AK, et al. Human metabolic individuality in biomedical and pharmaceutical research[J]. Nature, 2011, 477(7362): 54-60.
  • 7Patti GJ, Yanes O, Shriver LP, et al. Metabolomics implicates altered sphingolipids in chronic pain of neuropathic origin[J]. Nat Chem Biol, 2012, 8(3): 232-234.
  • 8Quinones MP, Kaddurah-Daouk R. Metabolomics tools for identifying biomarkers for neuropsychiatric diseases[J]. Neurobiol Dis, 2009, 35(2): 165-176.
  • 9Patti GJ, Yanes O, Siuzdak G. Innovation: Metabolomics: the apogee of the omics trilogy[J]. Nat Rev Mol Cell Biol, 2012, 13(4): 263-269.
  • 10Kaddurah-Daouk R, McEvoy J, Baillie RA, et al. Metabolomic mapping of atypical antipsychotic effects in schizophrenia[J]. Mol Psychiatry, 2007, 12(10): 934-945.

二级参考文献75

  • 1刘微,罗林开,王华珍.基于随机森林的基金重仓股预测[J].福州大学学报(自然科学版),2008,36(S1):134-139. 被引量:8
  • 2冒海蕾,徐旻,王斌,王惠民,邓小明,林东海.正交信号校正在正常成人血清^1H NMR谱的代谢组分析中的滤噪作用评价[J].化学学报,2007,65(2):152-158. 被引量:29
  • 3林成德,彭国兰.随机森林在企业信用评估指标体系确定中的应用[J].厦门大学学报(自然科学版),2007,46(2):199-203. 被引量:37
  • 4SERKOVA N J, ZHANG Y, COATNEY J L, et al. Early Detection of Graft Failure Using the Blood Metabolic Profile of a Liver Recipient [J]. Transplantation, 2007, 83 (4):517-521.
  • 5CHOI H K, YOON J H, KIM Y S, et al. Metabolomic Profiling of Cheonggukjang During Fermentation by H-1 NMR Spectrometry and Principal Components Analysis [ J]. Process Biochemistry, 2007, 42 (2):263-266.
  • 6CHOI H K, YOON J H. Metabolomic Profiling of Vitis Vinifera Cell Suspension Culture Elicited with Silver Nitrate by H-1 NMR Spectrometry and Principal Components Analysis [ J ]. Process Biochemistry, 2007, 42 (2) : 271-274.
  • 7EKMAN D R, KEUN H C, EADS C D, et al. Metabolomic Evaluation of Rat Liver and Testis to Characterize the Toxicity of Triazole Fungicides [J]. Metabolomics, 2006, 2 (2) : 63-73.
  • 8CONSTANTINOU M A, THEOCHARIS S E, MIKROS E. Application of Metabonomics on an Experimental Model of Fibrosis and Cirrhosis Induced by Thioacetamidc in Rats [J]. Toxicology and Applied Pharmacology, 2007, 218 (1) : 11-19.
  • 9LUTZ U, LUTZ R W, LUTZ W K. Metabolic Profiling of Glucuronides in Human Urine by LC-MS/MS and Partial Least-Squares Discriminant Analysis for Classification and Prediction of Gender [J]. Analysis Chemistry, 2006, 78 (13) : 4564- 4571.
  • 10JIA L W, WANG C, KONG H W, et al. Plasma Phospholipid Metabolic Profiling and Biomarkers of Mouse IgA Nephropathy [J].Metabolomics, 2006, 2 (2):95-104.

共引文献697

同被引文献40

  • 1董师师,黄哲学.随机森林理论浅析[J].集成技术,2013,2(1):1-7. 被引量:149
  • 2Chang Y, He H S, Bishop I,et al. Long-term foresl landscape re-sponses to fire exclusion in the Great Xing,an Mountains,China[J]. International Journal of Wildland Fire,2007,16( 1) :34-44.
  • 3Liu H P, Randerson J T, Lindfora J, et al. Changes in the surfaceenergy budget after fire in boreal ecosyslems of interior Alaska : anannual perspective [ J ]. Journal of Geophysical Research Atmos-pheres ,2005,110( D13): 2515_2530.
  • 4Zhong M H , Fan W C, Liu T M, et al. Statistical analysis on cur-rent status of China forest fire safety [ J ]. Fire Safety Journal,2003(38(3):257-269.
  • 5Breiman L. Random forests [ J ]. Machine Learning, 2001, 45?1):5-32.
  • 6Cutler D R, Edwards T J,Beard K H, et al. Random forests forclassification in ecology [ J ]. Ecology,2007, 88 ( 11 ) : 2783 -2792.
  • 7Oliveira S, Oehler F, San-Miguel-Ayanz J, et al. Modeling spa-tial patterns of fire occurrence in Mediterranean Europe usingMultiple Regression and Random Forestf J]. Forest Ecology andManagement,2012,275(4) :117-129.
  • 8Rodrigues M, de la Riva J. An insight into machine-learning al-gorithms to model human-caused wildfire occurrence[ J]. Envi-ronmental Modelling & Soft ware, 2014,57 : 192-201.
  • 9Kane V R, Lutz J A, Alina Cansler C, et al. Water balance andtopography predict fire and forest structure patterns[ J]. ForestEcology and Management,2015:,338:1-13.
  • 10Catry F X,Rego F C, Bagao F L, et al. Modeling and mappingwildfire ignition risk in Portugal [ J ]. International Journal ofWildland Fire,2009,18(8) :921-931.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部