期刊文献+

低温推进剂在轨储存热力学排气系统TVS研究进展 被引量:13

Development of thermodynamic venting system technology for cryogenic propellant storage on orbit
原文传递
导出
摘要 在空间零(微)重力环境下,有效地控制储罐压力并尽量减少液体推进剂的排放损失是低温推进剂在轨储存的核心技术任务。空间热力环境引起的热渗透不可避免,它将使得储罐压力持续升高,然而在零重力环境下无法通过类似地面顶部排气的方法来控制压力,其严重后果是大量气液混合物被直接排放至太空。针对这一问题而提出的热力学排气系统(TVS)能够在气液位置不确定的情况下实现少量的单纯气态排放,并且充分利用所排放低温推进剂节流后的热力学焓,从而在双重作用下有效地实现了储罐压力的控制。文中从仿真理论和实验两个方面总结归纳了国外TVS的技术研究历史和现状,涉及液氢、液氧和液态甲烷等低温推进剂以及模拟流体液氮,为我国低温推进剂空间储存相关技术的发展提供参考。 Propellant tank pressure control while minimizing propellant boil off loss is a significant challenge associated with the storage of cryogens in the microgravity environment of space. The inevitable heat penetration due to space heating will lead to continuing rise of the tank pressure. However, in zero - gravity environment it is hard to vent through the top of the tank as the vaporliquid interface location is unknown. To solve this problem, the concept of thermodynamic venting system(TVS) is pro- posed since it is independent of vapor - liquid interface location either in zero - g gravity or 1 - g gravity environment. TVS enables removing a small amount of vapor ( without liquid), which takes full advantage of the thermodynamic contribution of the vented propellant, thereby effectively controls the pressure of the tank. This paper summarizes the theoretical and experimental devel- opment and status of TVS technology abroad, involving on - orbit storage of liquid hydrogen, oxygen and methane as well as the simulating fluid nitrogen. It desires to provide references for domestic future development of cryogenic propellant storage on orbit.
出处 《低温与超导》 CAS 北大核心 2015年第2期5-13,共9页 Cryogenics and Superconductivity
基金 航天低温推进剂技术重点实验室基金课题(SKLTSCP1206-W) 上海市青年科技启明星计划(13QA1402000)
关键词 热力学排气系统 推进剂空间储存 仿真 实验 低温 Thermodynamic venting system (TVS) , Propellant storage, Simulation, Experiment, Cryogenic
  • 相关文献

参考文献29

  • 1Lak T, Wood C. Zero - G thermodynamic venting system final report, Rockwell Aerospace, Downey Operations, Report Number SSD 94M0038, Contract Number NAS8 - 392025.
  • 2刘展,厉彦忠,王磊,赵志翔.低温推进剂长期在轨压力管理技术研究进展[J].宇航学报,2014,35(3):254-261. 被引量:29
  • 3Flachbart R H, Hastings L J, et al. Testing the effects of helium pressurant on thermodynamic vent system per- formance with liquid hydrogen[C]. Cryogenic Engineer- ing Conference, Chattanooga, TN, July 16 - 20,2007.
  • 4Fazah M, Lak T, et al. Design and integrated operation of fan innovative thermodynamic vent system concept, AIAK/SAE/ASMIYASEE 29th Joint Propulsion Confer- ence and Exhibit, Monterey, CA, June 28 - 30,1993.
  • 5Hedayat A, Bailey J W, Hastings L J. Test data analysis of a spray bar zero - g liquid hydrogen vent system for upper stages. AIAA/ASME/SAE/ASEE 35th Joint Pro-pulsion Conference and Exhibit,Los Angeles, CA, June 20 - 24, 1999.
  • 6Flachbart R H, et al. Testing of a spray bar zero gravity cryogenic vent system for upper stages. AIAA/ASME! SAE/ASEE 35th Joint Propulsion Conference and Exhib- it, Los Angeles, CA, June 20 -24, 1999.
  • 7Lusby B S, Miranda B M, et al. Cryogenic propellant feed system analytical tool development. AIAA/ASME/ SAE/ASEE 47th Joint Propulsion Conference & Exhibit, San Diego, CaliforniaJuly 31 - August 03, 2011.
  • 8Taylor W J, Honkonen S C, William G E, et al. The cry- ogenic on - orbit liquid analytical tool (COOLANT) : A computer program for evaluating the thermodynamic per- formance of orbital cryogen storage facilities. 29th Aero- space Sciences Meeting, January 7 - 10,1991.
  • 9Taylor W J. COOLANT:The cryogenic on - orbit liquid analytical tool users manual volume 1, GDSS - CRAD - 88 - 005A, October 1989.
  • 10Lin C S, Van Dresar N T, Hasan M M. Pressure control analysis of cryogenic storage systems [ J ]. Journal of Propulsion and Power, 2004,20 ( 3 ) :480 - 485.

二级参考文献30

  • 1Chato D J. Cryogenic technology development for explorations missions[ C ]. The 45th AIAA Aerospace Sciences Meeting & Exhibit, Nevada, USA, January 8 - 11, 2007.
  • 2Matthew J D, Vadim N S, Jacob B, et al. Temperature stratification in a cryogenic fuel tank [ J ]. Journal of Thermophysics and Heat transfer, 2013,1 : 116 - 126.
  • 3Lin C S, Van Dresar N T, Hasan M M. Pressure control analysis of cryogenic storage systems [ J ]. Journal of propulsion and power, 2004, 20(3):480-485.
  • 4Keller C W. Thermal performance of multilayer insulations [ R ]. NASA CR-72747, NASA Lewis Research Center, April 1971.
  • 5Martin J J, Smith J W. Cryogenic testing of a Foam-Muhilayer insulation concept in a simulated orbit hold environment [ C ]. AIAA/SAE/ASME/ASEE The 29th Joint Propulsion Conference and Exhibit, Monterey, CA, USA, June 28 -30, 1993.
  • 6Hastings L J, Hedayat A, Brown T M. Analytical modeling and test correlation of variable density multilayer insulation for cryogenic storage [ R]. NASA/TM 2004 - 213175, Marshall Space Flight Center, May 2004.
  • 7Nast T, Frank D, Burns K. Cryogenic propellant boil-off reduction approaches [ C ]. The 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Florida, USA, January 4 - 7, 2011.
  • 8Guernsey C S, Baker R S, Plachta D. Cryogenic propulsion with zero boil-off storage applied to outer planetary exploration [ C ]. The 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Arizona, USA, July 10-15, 2005.
  • 9Plachta D W, Christie R J, Jurns J M, et al. Passive ZBO storage of liquid hydrogen and liquid oxygen applied to space science mission concepts[ J]. Cryogenics, 2006, 46 : 89 - 97.
  • 10Michael D, Kirk A, Bernard K, et al. Design and development of an in-space deployable sun shield for the Atlas Centaur [ C ]. AIAA SPACE 2008 Conference & Exposition, California, USA, September 9 - 11,2008.

共引文献28

同被引文献42

引证文献13

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部