期刊文献+

向光素调节植物向光性及其与光敏色素/隐花色素的相互关系 被引量:14

Specificity and Crosstalk of Phototropin with Cryptochrome and Phytochrome in Regulating Hypocotyl Phototropism
原文传递
导出
摘要 蓝光受体向光素(PHOT1/PHOT2)调节蓝光诱导的植物运动反应,包括植物向光性、叶绿体运动、气孔运动和叶片伸展等。其中,向光素介导的植物向光性能够促使植物弯向光源,确保其以最佳取向捕获光源,优化光合作用。光敏色素和隐花色素作为光受体也参与植物的向光性调节。该文综述了向光素介导的拟南芥(Arabidopsis thaliana)下胚轴向光弯曲信号转导及其与光敏色素、隐花色素协同作用的分子机制,以期为改造植物光捕获能力及提高光利用效率提供理论基础。 Blue light (BL) is a key factor controlling plant growth and morphogenesis. BL receptors phototropinl (PHOT1) and phototropin2 (PHOT2) mediate BL-induced plant movements such as phototropism, chloroplast relocation and stomatal opening responses. Phototropism allows plants to bend toward light by perceiving the direction, wavelength and intensity of incident light so that they can obtain optimum light. Phytochrome and cryptochrome are also involved in asymmetric regulation of hypocotyl growth, causing plant phototropic growth. In this review, we discuss the signaling for phototropins and focus on the crosstalk with phytochrome and cryptochrome signaling in regulating phototropism. Fun- damental progress in understanding the role of phototropins and phytochrome or cryptochrome in phototropism will con- tinue to provide a rational basis for biotechnological improvements in developing light-trapping plants with improved light-use efficiency.
出处 《植物学报》 CAS CSCD 北大核心 2015年第1期122-132,共11页 Chinese Bulletin of Botany
基金 国家自然科学基金(No.31170271,No.31101023)
关键词 向光素 向光性 光敏色素 隐花色素 信号转导 phototropin, phototropism, phytochrome, cryptochrome, signaling
  • 相关文献

参考文献4

二级参考文献232

  • 1王忠,顾蕴洁,莫亿伟,钱善勤.Negative phototropism of rice root and its influencing factors[J].Science China(Life Sciences),2002,45(5):485-496. 被引量:26
  • 2刘公社,任建宏,张俊英,童哲.蓝光对萝卜向光性反应能力的调节[J].应用与环境生物学报,1995,1(3):205-208. 被引量:4
  • 3Lukowitz, W., Gillmor, C.S., and Scheible, W.R. (2000). Positional cloning in Arabidopsis: why it feels good to have a genome initiative working for you. Plant Physiol 123, 795-805.
  • 4Maher, E.P., and Martindale, S.J. (1980). Mutants of Arabidopsis thaliana with altered responses to auxins and gravity. Biochem. Genet. 18, 1041-1053.
  • 5Marchant, A., and Bennett, M.J. (1998). The Arabidopsis AUX1 gene: a model system to study mRNA processing in plants. Plant Mol. Biol. 36, 463-471.
  • 6Marchant, A., Kargul, J., May, S.T., Muller, R, Delbarre, A., Perrot- Rechenmann, C., and Bennett, M.J. (1999). AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J 18, 2066-2073.
  • 7Marchant, A., Bhalerao, R., Casimiro, I., Eklof, J., Casero, P.J., Bennett, M., and Sandberg, G. (2002). AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14, 589-597.
  • 8Michaels, S.D., and Amasino, R.M. (1998). A robust method for detecting single-nucleotide changes as polymorphic markers by PCR. Plant J 14, 381-385.
  • 9Mizra, J.l., Olsen, G.M., Iverson, T.-H., and Maher, E.P. (1984). The growth and gravitropic responses of wild-type and auxin resistant mutants of Arabidopsis thaliana. Physiol. Plant 60, 516-522.
  • 10Motchoulski, A., and Liscum, E. (1999). Arabidopsis NPH3: a NPH1 photoreceptor-interacting protein essential for phototropism. Science 286, 961-964.

共引文献31

同被引文献139

引证文献14

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部