期刊文献+

在线商品虚假评论信息治理策略研究 被引量:5

Study on Information Management Strategies of Fake Reviews of Online Products
下载PDF
导出
摘要 在线商品虚假评论信息不仅误导消费者购物决策与商家销售评估,而且严重干扰了在线商品交易平台的意见挖掘结果。本文针对国内外对在线商品虚假评论治理的研究现状,从法律监管和鉴别模型两个层面重新定位了其治理目标,指出应根据不同的治理对象,从监管虚假评论形成路径的基本要素、减弱虚假评论形成路径的促进因素、激励正常消费者作出真实有效的评论并优化虚假评论识别模型的鉴别准确率4个方面完善在线商品虚假评论信息的治理途径,并详细阐述了各治理途径的具体实施办法以及今后优化和完善的建议与对策。 The online products fake reviews can not only miss the customers' shopping decision and manufacturers' salses assessing, but also disturb the opinion mining system of online commodity trading platform. Based on the research state of the on- hne products fake reviews' governance strategies all over the world, this paper repositioned the goals of governance both in the legal supervision and detection model, and proposed that according to the different governance objects, the governance approaches of the online products fake reviews should be improved from the four aspects, which including supervising the basic elements of its forming way, weakening the contributing factors of its forming way, encouraging the normal customers to make a real and effective review and optimizing the identification accuracy of the its detection model. Meanwhile, this paper gave a detailed description about the specific implementing measures of the each governance approach and the suggestions of its optimization direction.
出处 《现代情报》 CSSCI 北大核心 2015年第2期150-153,共4页 Journal of Modern Information
基金 国家大学生创新性实验计划(A类)基金项目“在线商品虚假评论识别及其治理研究”(项目编号:220-20111201316)的研究成果之一
关键词 在线商品 评论 虚假评论 识别 法律监管 信息治理 online product reviews fake reviews fake reviews detection legal supervision
  • 相关文献

参考文献11

  • 1陈燕方,娄策群.在线商品虚假评论形成路径研究[J].现代情报,2015,35(1):49-53. 被引量:20
  • 2Yoo K H,Gretzel U. Comparison of deceptive and truthfiil travel re-views [M] // Information and communication technologies in tourism2009. Springer Vienna, 2009 : 37 - 47.
  • 3Hu N, Bose I’ Gao Y, Liu L. Manipulation in digital word - of -mouth: A reality check for book reviews [ j] . Decision Support Sys-tems, 2011,50 (3): 627 - 635.
  • 4淘宝网.诗宝规则[EB/OL]. http: //rule, taobao. com/detail -62.htm, 2014-03-10.
  • 5新华网.首例差评师案告破[EB/OL].http: // news. sina. com.cn/o/2013 - 07 - 04/050927571266.shtml,2014 - 03-10.
  • 6Jindal N,Liu B. Opinion spam and analysis [ C] // Proceedings ofthe international conference on Web search and web data mining.ACM, 2008 : 219-230.
  • 7Ott M, Choi Y,Cardie C, Hancock J T. Finding deceptive opinionspam by any stretch of the imagination [ J ]. arXiv preprint arXiv:1107. 4557, 2011.
  • 8Algur S P,PatiJ A P, Hiremath P S, Shivashankar S. Conceptuallevel similarity measure based review spam detection [C] //Signal andImage Processing (ICSIP) , 2010 International Conference on. IEEE,2010: 416-423.
  • 9彭庆喜,钱铁云.基于量化情感的网店垃圾评论检测[J].山东大学学报(理学版),2013,48(11):66-72. 被引量:6
  • 10Lim E P, Nguyen V A,Jindal N, Liu B, Lauw H W. Detectingproduct review spammers using rating behaviors [C] //Proceedings ofthe 19th ACM international conference on Information and knowledgemanagement. ACM,2010 : 939 - 948.

二级参考文献29

  • 1HU Minqing, LIU Bing. Mining and summarizing cus- tomer reviews [C]//Proceedings of the 10th ACM SIGK- DD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2004.168-177.
  • 2DING Xiaowen, LIU Bing, YU Philip S, et al. A holistic lexicon-based approach to opinion mining [C]//Proceedings of the 2008 International Conference on Web Search and Data Mining, New York : ACM Press, 2008 : 231-240.
  • 3KIM S-M, HOVY E. Determining the sentiment of opinions[C]//Proceedings of the 20th International Confer- ence on Computational Linguistics. Philadelphia: Association for Computational Linguistics, 2004:1367.
  • 4GLASER A, SCHtiTZE H. Automatic generation of short informative sentiment summaries [C]// Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics. Philadelphia: Association for Computational Linguistics, 2008:276-285.
  • 5XIE Sihong, WANG Guan, LIN Shuyang, et al. Review spam detection via temporal pattern discovery [C]//Pro- ceedings of the 18th ACM SIGKDD International Confer- ence on Knowledge Discovery And Data Mining. New York: ACM Press, 2012:823-831.
  • 6Lim Ee-Peng, Nguyen Viet-An, Jindal Nitin, et al. De- tecting product review spammers using rating behaviors [C]//Proceedings of the 19th ACM Intemational Conference on Information and Knowledge Management. New York: ACM Press, 2010:939-948.
  • 7Jindal Nitin, LIU Bing, LIM Ee-peng, et al. Finding un-usual review patterns using unexpected rules [C]//Proceedings of the 19th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2010 : 1549-1552.
  • 8WANG Guan, XIE Sihong, LIU Bing,et al. Identify on- line store review spammers via social review graph[J]. ACM Transactions on Intelligent Systems and Technology, 2011 ,3(4) :61.1-61.21.
  • 9Jindal Nitin, LIU Bing. Opinion spam and analysis [C]// Proceedings of the 2008 International Conference on Web Search and Data Mining. New York: ACM Press, 2008 : 219-230.
  • 10Nitin Indurkhya, Fred J Damerau. Handbook of natural language processing[M]. 2nd. [S. l. ]: Chapman and Hall/CRC, 2010.

共引文献24

同被引文献52

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部