期刊文献+

奇完全数素因数的一个性质 被引量:2

A property of prime divisors of odd perfect numbers
下载PDF
导出
摘要 利用高次Diophantine方程的结果讨论奇完全数素因数的性质。证明了:如果n是奇完全数,p是n素因数,r是p在n的标准分解式中的次数,则σ(n/pr)/pr≠qt其中σ(n/pr)是n/pr的约数和,q是奇素数,t是正奇数或者适合t≤6的正偶数。 Using some results on higher degree Diophantine equations, the properties of prime divisors of odd perfect numbers are discussed. If n is an odd perfect number, p is a prime divisor of n and r is the degree of p in the factorization of n, then the result σ(n/p^r)/p^r≠q^t is proved, where σ(n/p^r) is the sum of divisors of n/pr, q is an odd prime, t is either an odd positive integer or an even positive integer with t≤6.
作者 付瑞琴 杨海
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期14-16,共3页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(11226038 11371012) 陕西省教育厅专项基金资助项目(14JK1311)
关键词 奇完全数 素因数 高次DIOPHANTINE方程 odd perfect number prime divisor higher degree Diophantine equation
  • 相关文献

参考文献11

  • 1GUY R K. Unsolved Problems in Number Theory (third edition) [ M ]. Beijing: Science Press, 2007.
  • 2华罗庚.数论导引[M].北京:科学出版社,1979..
  • 3DRIS M, LUCA F. A note on odd perfect numbers [EB/OL]. arxiv: 1103.1437 v 3 math. N'I', 2012, http ://arxiv. org/abs/1103. 1437V5.
  • 4CHEN F J,CHEN Y G. On odd perfect numbers [ J]. Bull Austral Math Soc, 2012, 86(3) :510-514.
  • 5BROUGHAN K A, DELBOURGO D, ZHOU Q. Im- proving the Chen and Chen result for odd perfect numbers[ J]. Integers ,2013, 13 (A39) : 1-8.
  • 6CHEN F J,CHEN Y G. On the index of an odd perfect number [J]. Colloq Math, 2014, 136 (1): 41-49.
  • 7DICKSON L E. History uf the Theo3 of Numbers, vol. i [ M]. Washington: Carnegie Institution, 1919. NIELSEN P P. Odd perfect numbers have at least nine distinct prime factors [ J]. Math Comput, 2007, 76 (260) :2109-2126.
  • 8NIELSEN P P. Odd perfect numbers have at least nine distinct prime factors [ J]. Math Comput, 2007, 76 (260) :2109-2126.
  • 9VAN DER WAALL R W. On the diophantine equa- tions X2 + . + 1 = 3y2, X3 -- 1 = 2y2 and x3 + 1 = 2y2 [J]. Simon Stevin, 1972/1973, 46( 1 ) : 39-51.
  • 10BENNEqq M A, SKINNER C M. Ternary diophantine equations via Galois representations and modular forms [J]. Canada J Math, 2004, 56( 1 ) : 23-54.

共引文献223

同被引文献16

  • 1谷秀川.奇完全数的两个猜想[J].数学进展,2015,44(1):23-28. 被引量:5
  • 2周尚超.奇完全数的欧拉因子[J].华东交通大学学报,2006,23(1):132-133. 被引量:4
  • 3华罗庚.数论导引[M].北京:科学出版社,1979..
  • 4GUY R K. Unsolved Problems in Number Theory, third edition[ M ]. Beijing : Science Press, 2007.
  • 5DRIS J A B. Solved the odd perfect number problem: some old and new approaches [ D ]. De La Salle Uni- versity, 2008.
  • 6DRIS J A B, LUCA F. A note on odd perfect numbers [EB/OL]. ArXiv: 1103. 1437 v 3 [ math. NT], 2012.
  • 7CHEN F J, CHEN Y G. On odd perfect numbers [ J ]. Bulletin of the Australian Mathematical Soc,2012, 86(3) :510-514.
  • 8BROUGHAN K A, DELBOURGO D, ZHOU Q z. Im- proving the Chen and Chen result for odd perfect num- bers [J]. Integers, 2013,13(A39) : 1-8.
  • 9CHEN F J, CHEN Y G. On the index of an odd per- feet number [ J ]. Colloq Math, 2014, 136 ( 1 ) : 41- 49.
  • 10NIELSON P P. Odd perfect numbers, diophantine e- quations, and upper bounds [ J ]. Math Comp, 2015, 84 (295) : 2549-2567.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部