摘要
利用高次Diophantine方程的结果讨论奇完全数素因数的性质。证明了:如果n是奇完全数,p是n素因数,r是p在n的标准分解式中的次数,则σ(n/pr)/pr≠qt其中σ(n/pr)是n/pr的约数和,q是奇素数,t是正奇数或者适合t≤6的正偶数。
Using some results on higher degree Diophantine equations, the properties of prime divisors of odd perfect numbers are discussed. If n is an odd perfect number, p is a prime divisor of n and r is the degree of p in the factorization of n, then the result σ(n/p^r)/p^r≠q^t is proved, where σ(n/p^r) is the sum of divisors of n/pr, q is an odd prime, t is either an odd positive integer or an even positive integer with t≤6.
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第1期14-16,共3页
Journal of Northwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(11226038 11371012)
陕西省教育厅专项基金资助项目(14JK1311)