期刊文献+

彩色立体图像质量评价方法 被引量:5

Quality assessment method of color stereoscopic images
下载PDF
导出
摘要 现有的大多数立体图像质量评价方法都是将彩色图像转换为灰度图像,从而丧失了色彩信息,不利于对彩色立体图像作出正确评价,针对这一问题,提出了一种彩色立体图像质量评价方法。首先,通过对参考图像对和失真图像对分别进行主成分分析(PCA)融合生成彩色图像,利用彩色小波变换分别提取彩色融合图像的低频系数;然后,把低频系数信息用四元数表示,即将低频系数的色相分量局部均值作为四元数的实部,三基色分量作为四元数的虚部,通过四元数奇异值分解得到奇异值特征向量;最后,对参考图像和失真图像的奇异值特征向量作余弦夹角、巴氏距离、卡方距离,分别作为立体图像质量评价指标。该方法在德克萨斯大学公布的对称失真立体图像库和非对称失真立体图像库分别进行验证,线性相关系数和斯皮尔曼等级相关系数(SROCC)在对称失真库中可高达0.919和0.923,与主观评价吻合度很高。 Most existing stereoscopic image quality assessment methods convert color images to gray scale images, which loses the color information, so it is not conducive for color stereopairs to make the right assessment. To solve this problem, a quality assessment method of color stereopairs was proposed. Firstly, the new algorithm used Principal Component Analysis (PCA) image fusion to deal with the reference image pairs and the distortion image pairs to generate 2D color images, Secondly, the low-frequency coefficients were extracted from the 2D images by color wavelet transform respectively. The information of low-frequency coefficients were expressed in quaternion form. In other words, hue component' local mean of low-frequency coefficients was regarded as real part of quaternion, and three primary color components were regarded as the imaginary parts of quaternion. Finally, singular value feature vectors were gained by quaternion singular value decomposition. Cosine angle, Bhattacharyya distance and chi-square distance based on singular value feature vectors were taken as image quality evaluation indexes respectively. The method was tested on the LIVE 3D Image Quality Database, which included both symmetric and asymmetric distorted 3D images published by university of Texas. The linear correlation coefficient and Spearman Rank Order Correlation Coefficient (SROCC) achieved 0. 919 and 0. 923 in symmetric database. The results have high accordance with the subjective evaluation and reach the expected values.
作者 仉静 桑庆兵
出处 《计算机应用》 CSCD 北大核心 2015年第3期816-820,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61170120) 江苏省产学研前瞻性联合研究项目(BY2013015-41) 江苏省科技支撑计划项目(BE2012031) 无锡市科技计划项目(CYE11G1111)
关键词 立体图像质量评价 主成分分析融合 彩色小波变换 四元数 quality assessment of stereoscopic image Principal Component Analysis (PCA) fusion color wavelettransform quaternion
  • 相关文献

参考文献18

  • 1MPAA. Theatrical market statistics[EB/OL].[2013-08-23]. http://www.mpaa.org/wp-content/uploads/2014/03/MPAA-Theatrical-Market-Statistics-2013_032514-v2.pdf.
  • 2Wikipedia. List of 3D movies[EB/OL].[2014-06-26]. http://en.wikipedia.org/wiki/List_of_3-D_films.
  • 3MOORTHY A K, SU C-C, MITTAL A, et al. Subjective evaluation of stereoscopic image quality[J]. Signal Processing: Image Communication, 2013,28(8):870-883.
  • 4BENOIT A, Le CALLET P, CAMPISI P, et al. Quality assessment of stereoscopic images[EB/OL].[2014-07-14]. https://hal.archives-ouvertes.fr/hal-00362891/document.
  • 5YOU J, XING L, PERKIS A, et al. Perceptual quality assessment for stereoscopic images based on 2D image quality metrics and disparity analysis[EB/OL].[2014-07-16]. http://www.researchgate.net/publication/200774635_Perceptual_Quality_Assessment_for_Stereoscopic_Images_Based_on_2D_Image_Quality_Metrics_and_Disparity_Analysis.
  • 6HEWAGE C T E R, MARIA M G. Reduced-reference quality metric for 3D depth map transmission[C]//3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON). Piscataway: IEEE, 2010:1-4.
  • 7CHEN M-J, SU C-C, KWON D-K, et al. Full-reference quality assessment of stereopairs accounting for rivalry[J]. Image Communication, 2013,28(9):1143-1155.
  • 8段芬芳,邵枫,蒋刚毅,郁梅,李福翠.基于三维结构张量的立体图像质量客观评价方法[J].光电子.激光,2014,25(1):192-198. 被引量:2
  • 9MALLAT S. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11(7):674-693.
  • 10HAMILTON W R. Lectures on quaternions: containing a systematic statement of a new mathematical method[M]. Dublin: Hodges and Smith, 1853:1-16.

二级参考文献52

  • 1冉瑞生,黄廷祝.基于四元数矩阵奇异值分解的彩色图像识别[J].计算机科学,2006,33(7):227-229. 被引量:4
  • 2骞森,朱剑英.基于奇异值分解的图像质量评价[J].东南大学学报(自然科学版),2006,36(4):643-646. 被引量:20
  • 3Eskicioglu A M, Sfisher P. A survey of image quality measures for gray scale image compression[C]. Computing in Aerospace Conference. San Diego, USA: American Institute of Aeronautics and Astronautics, 1993: 49-61.
  • 4Zhou Wang, Bovik A C. A universal image quality index[J]. IEEE Signal Processing Letters, 2002, 9(3).. 181-84.
  • 5Zhou Wang, Bovik A C, Sheikh H R, et al. Image quality assessment: From error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
  • 6Mauro Barni, Franco Bartolin, Alessia De Rosa. HVS modelling for quality evaluation of art images[C]. IEEE 14th International Conference on Digital Signal Processing. Santorini, Greece, 2002: 91-94.
  • 7Westen S J P, Lagendijk R L. Perceptual image quality based on a multiple channel HVS model[C]. IEEE 1995 International Conference on Acoustics, Speech, and Signal Processing. Detroit, MI, USA: IEEE, 1995: 2351- 2354.
  • 8Maloigne F. Spatio-temporal characteristics of the human color perception for digital quality assessment[C]. IEEE Signals, Circuits and Systems ISSCS 2005 International Symposium. New York: IEEE, 2005: 203-206.
  • 9Beghdadi A, Pesquest Popeseu B. A new image distortion measure based on wavelet decomposition[C]. IEEE 1995 International Conference on Acoustics, Speech, and Signal Processing. Paris, France : IEEE, 2003(1) : 485-488.
  • 10Zhang F. Quaternion and matrices of quaternion[J]. Lin. Alge. Appl. , 1997, 215: 21-57.

共引文献6

同被引文献42

  • 1宋洋,郁梅,彭宗举,邵枫,蒋刚毅.基于双目信息融合的立体图像质量评价模型[J].光电子技术,2014,34(2):102-105. 被引量:3
  • 2闫乐乐,李辉,邱聚能,梁平.基于区域对比度和SSIM的图像质量评价方法[J].应用光学,2015,36(1):58-63. 被引量:19
  • 3陈强,陈贺新,李文娟.基于3维矩阵变换的彩色图像质量评价方法研究[J].中国图象图形学报,2006,11(11):1732-1735. 被引量:4
  • 4HACOHEN Y, SHECHTMAN E, GOLDMAN D B, et al. Optimi- zing color consistency in photo collections [ J]. ACM Transactions on Graphics, 2013, 32(4): Article No. 38.
  • 5LIN S, RITCHIE D, FISHER M, et al. Probabilistic color-by-num- bers: suggesting pattern colorizations using factor graphs [ J]. ACM Transactions on Graphics, 2013, 32(4): Article No. 37.
  • 6BONNEEL N, SUNKAVALLI K, PARIS S, et al. Example-based video color grading [ J]. ACM Transactions on Graphics, 2013, 32 (4) : 96 -96.
  • 7BOYADZHIEV I, PARIS S, BALA K. User-assisted image compos- iting for photographic lighting [ J]. ACM Transactions on Graphics, 2013, 32(4): Article No. 36.
  • 8LEE D, PLATANIOTIS K N. Towards a full-reference quality as- sessment for color images using directional statistics [ J]. IEEE Transactions on Image Processing, 2015, 24( 11): 3950 -3965.
  • 9PE1 S C, CHEN L H. Image quality assessment using human visual DOG model fused with random forest [ J]. IEEE Transactions on Im- age Processing, 2015, 24(11): 3282-3292.
  • 10OMARI M, HASSOUNI M E, ABDELOUAHAD A A, et al. A statistical reduced-reference method for color image quality assess- ment [ J]. Multimedia Tools and Applications, 2015, 74 (19) : 8685 - 8701.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部