期刊文献+

硅基微结构上的聚吡咯功能薄膜均匀性研究 被引量:1

Uniformity Research of Polypyrrole Composite Functional Films Based on Silicon Microstructures
原文传递
导出
摘要 针对聚吡咯(PPy)功能薄膜在三维微结构上很难均匀电沉积,易出现MEMS超级电容器阴阳极黏连、接触等失效现象,通过控制吡咯(Py)单体与苯磺酸钠(BSNa)溶液的配比与循环伏安扫描速度,探索PPy功能薄膜在三维微结构上的均匀沉积方法。研究表明:当Py与BSNa摩尔比为1∶2,氧化石墨烯(GO)质量分数为0.4%时,以20 mV/s的扫描速度扫描56圈,制备出均匀致密的PPy功能薄膜。SEM测试表明:PPy功能薄膜具有良好的均匀性;恒流充放电测试表明:MEMS超级电容器具有良好的快速充放电特点。因此,本研究使三维硅基微结构上的功能薄膜均匀性得到明显改善,缓解了器件的阴阳极接触失效问题。 To solve the issues that the polypyrrole(PPy)composite functional film is difficult to uniformly electrodeposite on a three-dimensional microstructure,prone to failure such as the connection of the anode and cathode,and the contact of the MEMS supercapacitor.The uniformly deposition method of the PPy composite functional film on a three-dimensional microstructure was investigated by controlling the ratio of the pyrrole(Py)monomer and benzene sulfonate(BSNa)and the scanning rate of cyclic voltammetry.The results show that when the mole ratio of Py to BSNa is 1∶2,the mass fraction of GO is 0.4%,a uniform dense PPy composite functional film can be obtained with the scanning rate of 20 mV/s to scan 56 laps.The SEM test result shows that the PPy composite functional film has a good uniformity,and the constant current chargedischarge test result shows that the MEMS supercapacitor has good rapid charge and discharge characteristics.Therefore,the uniformity of the composite functional film on the threedimensional microstructure is significantly improved through the research,and the contact failure phenomenon of the anode and cathode of the device is alleviated.
出处 《微纳电子技术》 CAS 北大核心 2015年第2期89-92,122,共5页 Micronanoelectronic Technology
基金 山西省自然基金资助项目(2012011010-2)
关键词 MEMS超级电容器 功能薄膜 聚吡咯(PPy) 苯磺酸钠(BSNa) 扫描速度 均匀性 MEMS supercapacitor functional film polypyrrole(PPy) benzene sulfonate(BSNa) scanning rate uniformity
  • 相关文献

参考文献5

二级参考文献81

  • 1黄再波,高德淑,李朝晖,雷钢铁,周姬.高压静电纺丝法制备P(VDF-HFP)聚合物电解质[J].化学学报,2007,65(11):1007-1011. 被引量:10
  • 2Meng, C. Z.; Liu, C. H.; Chen, L. Z.; Hu, C. H.; Fan, S. S. Nano Lett. 2010, 10, 4025.
  • 3Wang, H. L.; Hao, Q. L.; Yang, X. J.; Lu, L. D.; Wang, X. Electrochem. Commun. 2009, 11, 1158.
  • 4Jyongsik, J.; Joonwon, B.; Moonjung, C.; Seong-Ho, Y. Carbon 2005, 43, 2730.
  • 5Liu, C. G.; Yu, Z. N.; Neff, D.; Zhamu, A.; Jang, B. Z. Nano Lett. 2010, 10, 4863.
  • 6Kim, C.; Ngoc, B. T. N.; Yang, K. S.; Kojima, M.; Kim, Y. A.; Kim, Y. J.; Endo, M.; Yang, S. C.Adv. Mater, 2007, 19, 2341.
  • 7Laforgue, A. J. Power Sources 2011, 196, 559.
  • 8Yah, X. B.; Tai, Z. X.; Chen, J. T.; Xue, Q. J. Nanoscale 2011, 3, 212.
  • 9Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Nature 2009, 457, 706.
  • 10Han, T. H.; Lee, W. J.; Lee, D. H.; Kim, J. E.; Choi, E. Y.; Kim, S. O. Adv. Mater. 2010, 22, 2060.

共引文献39

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部