期刊文献+

基于文本事件网络自动摘要的抽取方法 被引量:4

Extraction Method of Text Summarization Based on Event Network
下载PDF
导出
摘要 将文本按事件方式进行表示,把事件作为基本语义单元来构建事件本体。根据事件间的关系构建事件网络有向图能较好地表达文本的语义信息及事件间的关系重要程度。利用PAGERANK算法测算事件网络图中各节点对应事件的重要度并进行排序,按事件发生的时间顺序,输出事件对应的原语句作为摘要。实验结果表明,基于事件网络的文本自动文摘方法抽取出的摘要效果较好。 Text was expressed by the means of event,and event ontology was built by using event as the basic semantic unit.According to the relationship between events,we built event network direct diagram which can express more semantic information of the text and describe the importance of relationship between events.The importance degree of event of the event network corresponding to each node was calculated and ranked by using the PAGERANK algorithm.According to the time sequence of events,event corresponding primitives were exported as abstract.The experimental results show that automatic summary based on the event network method has better performance.
出处 《计算机科学》 CSCD 北大核心 2015年第3期210-213,223,共5页 Computer Science
基金 国家自然科学基金项目(61273328 61305053)资助
关键词 文本表示 事件本体 事件网络 PAGERANK Text representation Event ontology Event-Network PAGERANK
  • 相关文献

参考文献18

  • 1胡侠,林晔,王灿,林立.自动文本摘要技术综述[J].情报杂志,2010,29(8):144-147. 被引量:24
  • 2Lin C Y. Training a Selection Function for Extraction[C]//Pro- ceeding of the Eighteenth Annual International ACM Confer- ence on Information and Knowledge Management (CIKM). 1999:55-62.
  • 3Jiang Chang-jin, Peng Hong, Ma Qian-li, et al. Automatic Sum- marization for Chinese Text Based on Combined Words Recogni- tion and Paragraph Clustering[C]//Proceedings of the 2010 Third International Symposium on Intelligent Information Tech- nology and Security Informatics(IITSI' 10). 2010:591-594.
  • 4Z Pei-ying, L Cun-he. Automatic text summarization based on sentences clustering and extraction[C]//Proceedings of the 2009 2nd International Conference on Computer Science and In- formation Technology (ICCSIT 2009). 2009:167-170.
  • 5Chandra M, Gupta V,Paul S K. A Statistical approach for Auto- matic Text Summarization by Extraction[C]//2011 Internation- al Conference on Communication Systems and Network Tech- nologies(CSNT 2011). 2011 : 268-271.
  • 6Erkan G, Radev D R. LexRank: Graph-based lexical centrality as salience in text summarization[J]. Journal of Artificial Intelli- gence Research, 2004(22) : 457-479.
  • 7Zwaan R A, Radvansky G A. Situation models in language com- prehension and memory[J]. Psychological bulletin, 1998, 123 (2) : 162-185.
  • 8ACE (Automatic Contente Extraction) Chinese Annotation Guidelines for Events[R]. National Institute of Standards and Technology, 2005.
  • 9刘茂福,李文捷,姬东鸿.基于事件项语义图聚类的多文档摘要方法[J].中文信息学报,2010,24(5):77-84. 被引量:6
  • 10韩永峰,许旭阳,李弼程,朱武斌,陈刚.基于事件抽取的网络新闻多文档自动摘要[J].中文信息学报,2012,26(1):58-66. 被引量:15

二级参考文献111

共引文献153

同被引文献28

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部