期刊文献+

谐波显著度的基频提取方法 被引量:5

Pitch estimation based on harmonic salience
原文传递
导出
摘要 我们提出的谐波显著度的基频提取方法,目的是从语音信号中自动获取人声基频,该方法利用抑制因子计算出基频的谐波显著度谱,对各次谐波显著度加权求和之后进行基频轨迹跟踪确定语音的基频序列。在TIMIT掺噪数据集和音乐信息检索评测2005主旋律数据集上,谐波显著度方法的准确率分别达到了88.5%和73.3%,使倍频、半频错误相对降低了80%。实验表明,基于谐波显著度的基频提取方法增强了系统的抗噪性能以及抗倍半频错误的能力。 A method based on harmonic salience is proposed for extracting the fundamental frequency from speech signal. It first calculates the harmonic salience spectrum by a inhibiting factor, and summarizes the weighted salience of every harmonic partial. Finally the pitch stream is determined by harmonic tracking. The experiment is conducted with various noised data of TIMIT database and polyphonic melody data of Music Information Retrieval Evaluation Exchange (MIREX) 2005 respectively. The result shows that the accuracy of 88.5% and 73.3% are achieved, and 80% of the half-frequency errors and multi-frequency errors are eliminated. It indicates that this method can effectively enhance the noise immunity and suppress the half-frequency errors and multi-frequency errors.
出处 《声学学报》 EI CSCD 北大核心 2015年第2期294-299,共6页 Acta Acustica
基金 国家自然科学基金(10925419 90920302 61072124 11074275 11161140319 91120001 61271426) 中国科学院战略性先导科技专项(面向感知中国的新一代信息技术研究 XDA06030100 XDA06030500) 国家863计划(2012AA012503) 中国科学院重点部署项目(KGZD-EW-103-2)资助
  • 相关文献

参考文献28

  • 1吴玺宏.声纹识别听声辨人[J].计算机世界,2001,(8):14.
  • 2张建平,李明,索宏彬,杨琳,付强,颜永红.长时语音特征在说话人识别技术上的应用[J].声学学报,2010,35(2):267-269. 被引量:8
  • 3周若华,颜永红.一个快速自动音乐记谱方法[J].声学学报,2010,35(2):282-287. 被引量:4
  • 4Ding H,Soon Y,Yeo C K.A DCT-based speech enhancement system with pitch synchronous analysis.Audio,Speech,and Language Processing,IEEE Transactions on,2011;19(8):2614-2623.
  • 5Chen J H,Kao Y A.Pitch marking based on an adaptable filter and a peak-valley estimation method.Computational Linguistics and Chinese Language Processing,2001;6(5):1-12.
  • 6Geckinli N,Yavuz D.Algorithm for pitch extraction using zero-crossing interval sequence.Acoustics,Speech and Signal Processing,IEEE Transactions on,1977;25(6):559-564.
  • 7胡海洋,原猛,冯海泓.一种基于动态平滑的实时基频提取算法[J].声学技术,2012,31(6):583-588. 被引量:1
  • 8王杰,耿丽红.基于谐波自相关的基音检测[J].系统工程与电子技术,2013,35(1):218-222. 被引量:2
  • 9俞翠华.含噪语音信号的基音提取算法研究.南京信息工程大学,2011.
  • 10Ahmadi S,Spanias A S.Cepstrum-based pitch detection using a new statistical V/UV classification algorithm.Speech and Audio Processing,IEEE Transactions on,1999;7(3):333-338.

二级参考文献62

  • 1岳振军,王浩,张雄伟.基于正弦谐波模型和BP神经网络的语音变换算法及实现[J].信号处理,2005,21(z1):208-211. 被引量:7
  • 2Campbell W M, Sturim D E, Reynolds D A. Support vector machines using GMM supervectors for speaker verification. IEEE SIGNAL PROCESSING LETTERS, 2006; 13(5).
  • 3Reynolds D A, Rose R C. An integrated speech-background model for robust speaker identification. ICASSP-92 pp. II- 185 - II-188.
  • 4Pelecanos J, Sridharan S. Feature warping for robust speaker verification. In: Proc. ISCA Workshop on Speaker, Recognition - 2001.
  • 5Campbell W M, Sturim D, Reynolds D A, Solomonoff A. SVM based speaker verification using a GMM supervector kernel and NAP variability compensation. ICASSP, 2006: 97-100.
  • 6Kenny P, Boulianne G, Ouellet P, Dumouchel P. Joint factor analysis versus eigenchannels in speaker recognition. IEEE Transactions. on Audio, Speech, and Language, 2007; 15(4): 1435-1447.
  • 7Auckenthaler R, Carey M, Lloyd-Thomas H. Score normalization for text-independent speaker verification systems. Digital Signal Processing, 2000; 10:42-54.
  • 8Dehak Najim, Demouchel Pierre, Kenny Patrick. Modeling prosodic feature with joint factor analysis for speaker verification. IEEE Trans. Audio Speech and Language Processing, 2007.
  • 9Baker Brendan, Vogt Robbie, Sridharan Sridha. Gaussian mixture modeling of broad phonetic and syllable events for text-independent speaker verification. In: Proc. Interspeech2005, Lisbon, Portugal, 2005:2429-2432.
  • 10Zeng Yumin, Wu Huayu, Cao Rong. Pitch synchronous analysis method and criterion based speaker identification. In: Proc. ICNC2007.

共引文献20

同被引文献27

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部