期刊文献+

基于改进型混洗蛙跳算法的网格DAG任务调度 被引量:1

Grid DAG task scheduling based on an improved shuffled frog leaping algorithm
下载PDF
导出
摘要 针对网格环境中DAG任务调度问题,提出一种改进混洗蛙跳算法,通过增设族群进化点和引入邻域搜索策略,解决了原算法进化动力不足和易陷入局部最优的问题;为解决DAG任务在启发式算法中编码困难的问题,利用DAG任务自身的约束条件,重新定义解空间的度量方式,进而提出一种新的编码方式。仿真实验结果表明,改进算法的收敛速度较GA、PSO、SFL算法分别提高了75%、94%和27%,搜索性能亦有明显改善,能有效地提高最优解的质量。 In view of the problem of DAG task scheduling in grid environment,an improved shuffled frog leaping algorithm is presented.The evolutionary points of memeplexes and neighborhood search strategies are introduced to solve the evolutional power shortage and local optimization problem.Because it's difficult for coding DAG task in the heuristic algorithm,a new coding method is presented,which redefines the measurement of solution space by its own constraint condition of DAG task.The simulation results show that compared with GA,PSO,SFL,the convergence speed of the improved algorithm is respectively increased by 75%,94% and 27%,and search performance is significantly improved.Therefore,the improved algorithm can effectively improve the quality of the optimal solution.
出处 《桂林电子科技大学学报》 2015年第1期64-69,共6页 Journal of Guilin University of Electronic Technology
基金 广西教育厅科研项目(2009MS1195) 广西可信软件重点实验室开放基金(kx201106)
关键词 网格 混洗蛙跳算法 DAG任务 编码 邻域搜索 grid shuffled frog leaping algorithm DAG task coding neighborhood search
  • 相关文献

参考文献7

  • 1Foster I, Kesselman C, Tuecke S. The anatomy of the grid: enabling sealable virtual organizations[J]. Interna- tional Journal of High Performanee Computing Appli- cations, 2001,15(3) : 200-222.
  • 2Eusuff M M,Lansey K E. Optimization of water distri- bution network design using the shuffled frog leaping al- gorithm[J]. Journal of Water Resources Planning and Management, 2003,129 (3) :210-225.
  • 3Niknam T, Azad Farsani E. A hybrid self-adaptive parti- cle swarm optimization and modified shuffled frog lea- ping algorithm for distribution feeder reconfiguration [J]. Engineering Applications of Artificial Intelligence, 2010,23(8) : 1340-1349.
  • 4朱海,王宇平.融合安全的网格依赖任务调度双目标优化模型及算法[J].软件学报,2011,22(11):2729-2748. 被引量:13
  • 5陈晶,潘全科.同构计算环境中DAG任务图的调度算法[J].计算机工程与设计,2009,30(3):668-670. 被引量:3
  • 6Carter B R, Watson D W, Freund R F, et al. Genera tional scheduling for dynamic task management in het erogeneous computing systems [ J]. Information Sci ences, 1998,106 (3):219-236.
  • 7Eusuff M, Lansey K,Pasha F. Shuffled frog-leaping al- gorithm: a memetic meta-heuristic for discrete optimi- zation[J]. Engineering Optimization, 2006,38 ( 2 ) : 129- 154.

二级参考文献19

  • 1林剑柠,吴慧中.基于遗传算法的网格资源调度算法[J].计算机研究与发展,2004,41(12):2195-2199. 被引量:70
  • 2张伟哲,刘欣然,云晓春,张宏莉,胡铭曾,刘凯鹏.信任驱动的网格作业调度算法[J].通信学报,2006,27(2):73-79. 被引量:33
  • 3袁禄来,曾国荪,姜黎立,蒋昌俊.网格环境下基于信任模型的动态级调度[J].计算机学报,2006,29(7):1217-1224. 被引量:53
  • 4潘全科,王文宏,潘群,朱剑英.解决JOB SHOP问题的粒子群优化算法[J].机械科学与技术,2006,25(6):675-679. 被引量:10
  • 5蔡荣英,李丽珊,林晓宇,钟一文.求解旅行商问题的自学习粒子群优化算法[J].计算机工程与设计,2007,28(2):261-263. 被引量:12
  • 6Kennedy J,Eberhart R.Particle swarm optimization[C].IEEE Intl Conf on Neural Networks. Perth, Australia: IEEE Press, 1995: 1942-1948.
  • 7Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm[C]. Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics.Piscataway, Nagoya, Japan:IEEE Service Center,1997:4104-4109.
  • 8Clerc M. Discrete particle swarm optimization, illustrated by traveling salesman problem[C]. Onwubolu G C,Babu B V.New Optimization Techniques in Engineering. Berlin: Springer- Verlag, 2004:219-239.
  • 9Sih G C,Lee E A.A compile time scheduling heuristic for interconnection constrained heterogeneous processor architectures [J]. IEEE Trans Parallel and Distributed Systems, 1993,4 (2): 75-87.
  • 10Edwin S H Hou,Nirwan Ansari,Hong Ren.A genetic algorithm for multiprocessor scheduling [J]. IEEE Trans on Parallel and Distributed Systems,1994,5(2):113-120.

共引文献14

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部