期刊文献+

基于树结构分层随机森林在非约束环境下的头部姿态估计 被引量:12

Head Pose Estimation Based on Tree-structure Cascaded Random Forests in Unconstrained Environment
下载PDF
导出
摘要 头部姿态估计是人类行为和注意力的关键,受到光照、噪声、身份、遮挡等许多因素的影响。为了提高非约束环境下的估计准确率和鲁棒性,该论文提出了树结构分层随机森林在非约束环境下的多类头部姿态估计。首先,为了消除不同环境的噪声影响,提取人脸区域的组合纹理特征,对人脸区域进行积极人脸子区域的分类,分类结果作为树结构分层随机森林的先验知识输入;其次,提出了一种树结构分层随机森林算法,分层估计多自由度下的头部姿态;再次,为了增强算法的分类能力,使用自适应高斯混合模型作为多层次子森林叶子节点的投票模型。在多个公共数据集上的多种非约束实验环境下进行头部姿态估计,最终实验结果表明所提算法在不同质量的图像上都有很好的估计准确率和鲁棒性。 Head pose estimation is an important evaluating indicator of human attention, which depends on many factors, such as illumination, noise, identification, occlusion and so on. In order to enhance estimation efficiency and accuracy, this paper presents tree-structure cascaded random forests to estimate head pose in different quality images. First, in order to eliminate the influence of different environment noise, combined texture features in random forests for positive facial patch classification are extracted, which will be the privileged inputs to estimate head pose. Second, a coarse-to-fine approach is proposed to estimate head pose both in the yaw and pitch, which is called tree-structure cascaded random forests. Third, an adaptive Gaussian mixture model is used to enhance discriminate vote energy in the tree distribution. This framework is evaluated in unconstrained environmental datasets. The experiments show that the proposed approach has a remarkable and robust performance in different quality images.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第3期543-551,共9页 Journal of Electronics & Information Technology
基金 国家自然科学青年基金(61205062) 湖北省自然科学基金(2012FFB 02701) 华中科技大学文华学院青年基金(J0200540102)资助课题
关键词 头部姿态估计 非约束环境 树结构分层随机森林 人脸积极子区域先验分类 自适应高斯混合模型 Head pose estimation Unconstrained environment Tree-structure cascaded random forests Positive facial patch privileged classification Adaptive Gaussian mixture model
  • 相关文献

同被引文献112

  • 1李洋,方滨兴,郭莉,田志宏.基于主动学习和TCM-KNN方法的有指导入侵检测技术[J].计算机学报,2007,30(8):1464-1473. 被引量:31
  • 2王培,周贤伟,覃伯平,赵鹏,郑连存.基于多代理的无线传感器网络入侵检测系统研究[J].传感技术学报,2007,20(3):677-681. 被引量:11
  • 3ZHAO W, CHELLAPPA R,PHILLIPS P, et al. Face recognition: a literature survey[J].ACM Computing Surveys, 2003,35 (4) : 430-458.
  • 4PHILLIPS P J,GROTHER P, MICAELS R J, et al.Face recognition vendor test 2002 :evaluation reportERS.Nation- al Institute of Standards and Technology,2002: 100-107.
  • 5MURPHY-CHUTORIAN E,TRIVEDI M M.Head pose estimation in computer vision: a survey[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 2009,31(4) : 607-626.
  • 6NG J, GONG S. Composite support vector machines for detection of face across views and pose estimation[J].lmage and Vision Computing,2002,20(5) :359-368.
  • 7SHERRAH J,GONG S.Face distributions in similarity space under varying head Pose[J].Image and Vison Compu- ting,2001,19(12) :807-819.
  • 8DUDA R, HART P, STORK D.Pattern classification[M].[s.1.] : Wiley-Interscience, 2000 : 119-131.
  • 9BROWN L,TIAN Y L.Comparative study of coarse head pose estimation[J].IEEE Workshop Motion and Video Computing, 2002 : 125-130.
  • 10ZHAO L, LI G Pinga, GARLBOM I. Read-time orientation estimation using neural r/etworks[C]//IEEE lnt'l Con: on Image Proccessing, 2002 : 297-300.

引证文献12

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部