期刊文献+

颗粒阻尼器近似理论模型研究 被引量:10

Investigation on Particle Damper Based on an Approximate Theoretical Model
下载PDF
导出
摘要 颗粒阻尼由于其独有的优势特点,得到了国内外学者的广泛关注。然而尽管目前对于颗粒阻尼的研究很多,但大多集中在试验和仿真两方面。颗粒阻尼的高度非线性特性,使得很难从理论上对其进行定量分析研究,这也在一定程度上限制了颗粒阻尼技术的发展。针对这一问题,提出一种非线性颗粒阻尼器的线性等效方式,此等效方式能够在给定的振动环境下充分体现颗粒阻尼的耗能特点。将其应用于颗粒阻尼动力吸振器的模型简化,并与试验结果进行对比,发现理论模型计算的频响函数曲线与试验测得的数据吻合程度较高,由此证明了理论模型的准确性;研究还发现振动加速度是影响颗粒阻尼器耗能特性的主要因素,其对于颗粒阻尼器等效模型的三个主要参数均有不同程度的影响,且这些参数随振动加速度有效值的变化规律与通过试验和仿真得到的结论相一致,其中人们最为关心的等效黏性阻尼系数,其随振动加速度的变化符合Gamma分布。 The non-obstructive particle damping (NOPD) has caused people to pay wide attention as a new damping technology, because of its particular advantages, such as temperature insensitivity, radiation resistance, long working life, reliability and so on. People have done much research on the NOPD, but most of them are by experiment and simulation. It is very difficult to study the damping characteristic of particle damper (PD) though theoretical method, due to its high nonlinearity. An equivalent method is developed to model the nonlinear damping of PDs, which can exhibit characteristic of PDs’ energy dissipation adequately. For the Tuned Particle Damper (TPD), a simplified theoretical model is established. And the correctness of the model has been validated by experimental results. The research also confirms that vibration acceleration has a significant effect on the three parameters of equivalent model for PD, and this conclusion is consistent with experimental or simulation results.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2015年第3期87-94,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金(11272145) 中央高校基本科研业务费专项资金 江苏省普通高校研究生科研创新计划(CXLX11_0179)资助项目
关键词 颗粒阻尼 动力吸振器 加速度有效值 等效阻尼 particle damping dynamic vibration absorber effect value of acceleration equivalent damping
  • 相关文献

参考文献15

  • 1PANOSSIAN H V. Non-obstructive particle damping tests on aluminum beams[C]//Proceedings of Damping 91, June 10-12, 1991, SanDiego, California, 1991: 13-15.
  • 2PANOSSIAN H V. Structural damping enhancement via non obstructive particle damping technique[J]. Journal of Vibration and Acoustics, American Society of Mechanical Engineers, 1992, 114(1). 101-105.
  • 3WONG C X, DANIEL M C, RONGONG J A. Energy dissipation prediction of particle dampers[J]. Journal of Sound andVibration, 2009, 319(1-2): 91-118.
  • 4LU Z, MASRI S, LU X. Parametric studies of the performance of particle dampers under harmonic excitation[J]. Structure Control and Health Monitoring, 2011, 18(1): 79-98.
  • 5MARHADI K S, KINRAV K. Particle impact damping: Effect of mass ratio, material, and shape[J]. Journal of Sound andVibration, 2005, 283(1-2): 443-448.
  • 6STEVEN E O. An analytical particle damping model[J]. Journal of Sound and Vibration, 2003,264(5): 1155-1166.
  • 7SAEKI M. Analytical study of multi-particle damping[J]. Journal of Sound and Vibration, 2005, 281(3-5): 1133-1144.
  • 8WU C J, LIAO W H, WANG M Y. Modeling of granular particle damping using multiphase flow theory of gas-particle[J]. Journal of Vibration andAeoustics, 2004, 126(2). 196-201.
  • 9胡溧,黄其柏,柳占新,王剑亮.颗粒阻尼的动态特性研究[J].振动与冲击,2009,28(1):134-137. 被引量:33
  • 10LIU W, TOMLINSON G R, RONGONG J A. The dynamic eharacterisation of disk geometry particle dampers[J]. Journal of Sound and Vibration, 2005, 280(3-5): 849-861.

二级参考文献30

共引文献40

同被引文献67

引证文献10

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部