期刊文献+

一种改进的SIFT图像匹配算法 被引量:4

An Improved SIFT Image Matching Algorithm
下载PDF
导出
摘要 针对尺度不变特征变换(SIFT)算法的匹配结果存在错误匹配点以及冗余匹配点的问题,提出一种改进的图像匹配算法。该算法将SIFT算子的尺度空间极值点作为初始特征点,用Harris角点检测算子对初始特征点进行筛选,选择高对比度的点作为最终特征点。接着设置合适的欧氏距离阈值进行粗匹配。由于SIFT得到的匹配点集存在冗余与错误匹配,改进的算法在匹配后再进行一次逆向匹配,最后,利用RANSAC算法进行纠错,得到正确的匹配特征点对。实验结果表明,在图像有旋转、平移、光照等情况下,该算法稳定、可靠。 Puts forwards an improved image matching algorithm aiming at the problems of that Scale Invariant Feature Transform algorithm has a few false and repeated matching feature points. The improved image matching method takes the extremum got by the SIFT descriptor as origi-nal keypoints, then filters the original keypoints by Harris corner detection operator. Selects points which have a high contrast as final points and match final points by using the proportion of the Euclidean distance. As there are some redundant and error matching points, conversely matches both images based on SIFT matching. Finally uses RANSAC algorithm to select the correct match keypoints. The re-sults show that the algorithm is stable and reliable under the change of rotation, translation, light, contrast and so on.
作者 林强
出处 《现代计算机(中旬刊)》 2015年第2期58-62,共5页 Modern Computer
关键词 图像匹配 SIFT特征 随机抽样一致性 欧氏距离 Image Matching SIFT Feature RANSAC Euclidean Distance
  • 相关文献

参考文献2

二级参考文献13

  • 1张鹏强,余旭初,韩丽,刘景正.基于直线特征匹配的序列图像自动配准[J].武汉大学学报(信息科学版),2007,32(8):676-679. 被引量:13
  • 2刘进,闫利.图像相关匹配算法的快速实现[J].武汉大学学报(信息科学版),2007,32(8):684-687. 被引量:12
  • 3Stein A. Hehert M. Incorporating Background In variance Into Feature-based Object Recognition[C]IEEE Workshops on Application of Computer Vi sion, Breckenridge. CO.USA, 2005.
  • 4Lowe l) G. Distinctive Image Features from Scale Invariant Keypoints [ J]. International Journal of Computer Vision,2004,2 (60) :91-110.
  • 5Yang Ke, Sukthankar R. PCA SIFT: A More Dis tinctive Representation for l.ocal Image Descriptors [C]. The 1EEE Conference on Compuler Vision and Pallern Recognition, Washinon, DC, USA, 2004.
  • 6Wang Wei, Hong Jun,Tang Yiping. Image Matching for Geomorphic Measurement Based on SIFT and RANSAC Methods [C]. The 2008 International Conference on Computer Science and Software Engi neering,Wuhan, China, 2008.
  • 7I.indeberg T. Scale-space Theory: a Basic Tool for Analyzing Structures at Different Seales[J]. Journal of Applied Statistics,2003,21 (2):224-270.
  • 8Peng I.iang, I.i Shaofa, Cheng Wang. A New Image Matching Algorithm Based on Scale Adapted Inter-est Point Detection[C]. The 2009 IEEE Interna- tional Conference on Information and Automation, Zhuhai/Macao, China, 2009.
  • 9Brown M, David G. Automatic Panoramic Image Stitching Using Invariant Features[J]. International Journal of Computer Vision, 2007, 74(1) : 59-73.
  • 10张羽,朱丹,王玉良.一种改进的快速SIFT特征匹配算法[J].微计算机信息,2008,24(33):220-222. 被引量:17

共引文献20

同被引文献30

  • 1屠文珂,阎保定,杨海涛,李萍.一种基于仿生学原理的复杂彩色目标辨识方法[J].河南科技大学学报(自然科学版),2005,26(6):67-69. 被引量:7
  • 2骞森,朱剑英.基于改进的SIFT特征的图像双向匹配算法[J].机械科学与技术,2007,26(9):1179-1182. 被引量:44
  • 3Kuglin C D, Hines D C. The Phase Correlation Image alignment method[C]//IEEE Conference on Cybernetics and Society, New York, 1975: 163-165.
  • 4M. A. Fischlcr, R.C.Bolles. Random Sample Consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications oftheACM, 1981, 24(6): 381-395.
  • 5David G. Lowe. Object recognition from local scale-invariant features[C] //International Conference on Computer Vision, Corfu , Greece, 1999(9): 1150-1157.
  • 6D.G. Lowe. Distinctive image feature from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 7Koenderink J.J. The structure of images[J]. Biological Cybernetics, 1984 (50): 363-396.
  • 8Lindeberg, T. Detecting salient blob-like image structures and their scales with a scale-space primal sketch: a method for focus-of-attention[J]. International Journal of Computer Vision, 1993, 11(3): 283-318.
  • 9程明明.图像内容的显著性与相似性研究[D].北京:清华大学,2012.
  • 10Itti L, Koch C, Niebur E. A model of sali- ency-based visual attention for rapid scene a- nalysis[J]. IEEE TPAMI, 1998,20(11): 1254 - 1259.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部