摘要
A single sheet of graphene exhibits the ability to turn polarization of light by several degrees in modest magnetic fields. Here we demonstrate that giant angle rotation in graphene in the terahertz range can be realized and further increased by the introduction of surface plasmon and constructive Fabry Perot interference with the supporting substrate. The maximum Kerr rotation angle is up to 15° in a single layer of graphene ribbons at 6 TPIz for the applied magnetic field 4 T. Such a magnification in magneto-optical Kerr effect can be realized in a fairly large incident angle.
A single sheet of graphene exhibits the ability to turn polarization of light by several degrees in modest magnetic fields. Here we demonstrate that giant angle rotation in graphene in the terahertz range can be realized and further increased by the introduction of surface plasmon and constructive Fabry Perot interference with the supporting substrate. The maximum Kerr rotation angle is up to 15° in a single layer of graphene ribbons at 6 TPIz for the applied magnetic field 4 T. Such a magnification in magneto-optical Kerr effect can be realized in a fairly large incident angle.
基金
Supported by the National Natural Science Foundation of China under Grant No 11474254