期刊文献+

基于时空兴趣点的单人行为及交互行为识别 被引量:9

Single and interactive human behavior recognition algorithm based on spatio-temporal interest point
下载PDF
导出
摘要 本文方法首先从视频中提取出代表足够运动信息的时空兴趣点,并通过人体前景剪影连通性分析判别时空兴趣点的点集范围。然后对每个视频的兴趣点样本进行高斯混合聚类生成时空单词。最后对时空单词进行训练得到每个行为的高斯混合模型用于人体行为的识别。该方法既可用于单人行为识别也可用于双人行为识别。在行为库上的实验结果证明了该方法有较高的正确率。 ; First, spatio-temporal interest points containing enough human motion information are detected, and a set of spatio-temporal interest points are selected based on the information of connectivity of human silhouettes. Then, the GMM clustering is performed on the points in the training set and the spatial-temporal words are generated. Finally, these spatial-temporal words are trained to obtain the GMM of each behavior for human behavior recognition. This algorithm can be applied both to single behavior recognition and to interactive behavior recognition. Experiment results on activity database show that this approach has a satisfactory identification rate of human activities.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第1期304-308,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金广东联合基金重点项目(U0935001) '863'国家高技术研究发展计划项目(2012AA011505) 教育部博士学科点专项科研基金项目(20120061110091)
关键词 通信技术 人体行为识别 时空特征点 混合高斯模型 communication human action recognition spatio-temporal interest point Gaussian mixture model
  • 相关文献

参考文献9

  • 1Candamo J, Shreve M, Goldgof D B, et al. Under- standing transit scenes~ a survey on human behavior recognition algorithms[J]. IEEE Transactions on Intel- ligent Transportation Systems, 2010, 11 (1) : 206-224.
  • 2吴联世,夏利民,罗大庸.人的交互行为识别与理解研究综述[J].计算机应用与软件,2011,28(11):60-63. 被引量:9
  • 3Ryoo M S, Aggarwal J K. Spatio-temporal relation- ship match: video structure comparison for recogni- tion of complex human activities[C]//lEEE 12th In- ternational Conference on Computer Vision, 2009: 1593-1600.
  • 4Park S, Aggarwal J K. A hierarchical Bayesian net- work for event recognition of human actions and in- teractions[J] ACM Journal of Multimedia Systems, Special Issue on Video Surveillance, 2004, 10(2): 164-179.
  • 5Ryoo M S, Aggarwal J K. Recognition of composite human activities through context-free grammar based representation[C]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006: 1709-1718.
  • 6韩磊,李君峰,贾云得.基于时空单词的两人交互行为识别方法[J].计算机学报,2010,33(4):776-784. 被引量:26
  • 7Harris C, Stephens M. A combined corner and edge detector[C] /// Proceeding of the 4th Alvey Vision Conference, 1988 : 147-151.
  • 8Laptev 1, Lindeberg T. Space-time interest points [C]//Proceedings of Ninth IEEE International Con- ference on Computer Vision,2003: 432-439.
  • 9Dolldr P, Rabaud V, Cottrell G, et al. Behavior recognition via sparse spatio-temporal features[C]// Proceedings of 2nd Joint IEEE International Work- shop on Visual Surveillance and Performance Evalu- ation of Tracking and Surveillance,2005: 65-72.

二级参考文献39

  • 1杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 2Turaga P, Chellappa R, Subrahmanian V S, Udrea O. Machine recognition of human activities: A survey. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(11): 1473-1488.
  • 3Niebles J C, Wang H, Li Fei-Fei. Unsupervised learning of human action categories using spatial-temporal words. International Journal of Computer Vision, 2008, 79(3): 299-318.
  • 4Oliver N M, Rosario B, Pentland A P. A Bayesian computer vision system for modeling human interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8) : 831-843.
  • 5Xiang T, Gong S. Beyond tracking: Modeling activity and understanding behavior. International Journal of Computer Vision, 2006, 67(1): 21-51.
  • 6Ivanov Y A, Bobick A F. Recognition of visual activities and interactions by stochastic parsing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (8): 852-872.
  • 7Park S, Aggarwal J K. A hierarchical Bayesian network for event recognition of human action and interaction. ACM Journal of Multimedia Systems, Special Issue on Video Surveillance, 2004, 10(2): 164-179.
  • 8Ryoo M S, Aggarwal J K. Recognition of composite human activities through context-free grammar based representation//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. NY, USA, 2006, 1709-1719.
  • 9Du Y, Chen F, Xu W, Zhang W. Activity recognition through multi-scale motion detail analysis. Neurocomputing, 2008, 71(16-18): 3561-3574.
  • 10Hongeng S, Nevatia R, Bremond F. Video-hased event recognition: Activity representation and probabilistie reeognition methods. Computer Vision and Image Understanding, 2004, 96(2) : 129-162.

共引文献33

同被引文献57

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2李刚,邱尚斌,林凌,曾锐利.基于背景差法和帧间差法的运动目标检测方法[J].仪器仪表学报,2006,27(8):961-964. 被引量:111
  • 3韩磊,李君峰,贾云得.基于时空单词的两人交互行为识别方法[J].计算机学报,2010,33(4):1-11.
  • 4YU G, YUAN J, LIU Z. Predicting human activities using spatio- temporal structure of interest points[ C]// Proceedings of the 20th ACM International Conference on Multimedia. New York: ACM, 2012:1049 - 1052.
  • 5YU T H, KIM T K, CIPOLLA R. Real-time action recognition by spatiotemporal semantic and structural forests[ C]// BMVC 2010: Proceedings of the 21 st British Machine Vision Conference. Bristol: BMVA, 2010: 1-12.
  • 6LAPTEV I, LINDEBERG T. Space-time interest points [ C]// Pro- ceedings of the 9th IEEE International Conference on Computer Vi- sion. Piseataway, NJ: IEEE, 2003:432-439.
  • 7DOLLAR P, RABAUD V, COTYRELL G, et al. Behavior recogni- tion via sparse spatio-temporal features[C]// Proceedings of the 2005 IEEE International Workshop on Visual Surveillance and Per- formance Evaluation of Tracking and Surveillance. Piscataway, NJ: IEEE, 2005:65 -72.
  • 8BURGHOUTS G J, SCHUTTE K. Spatio-temporal layout of human actions for improved bag-of-words action detection[ J]. Pattern Rec- ognition Letters, 2013, 34(15) : 1861 - 1869.
  • 9ZHANG X, CUt J, TIAN L, et at. Local spatio-temporal feature based voting framework for complex human activity detection and lo- calization[ C]//Proceedings of the First Asian Conference on Pattern Recognition. Piscataway, NJ: IEEE, 2011: 12- 16.
  • 10LI N, CHENG X, GUO H, et al. A hybrid method for human inter- action recognition using spatio-temporal interest points [ C]// ICPR 2014: Proceedings of the 22nd International Conference on Pattern Recognition. Piscataway, NJ: IEEE, 2014:2513-2518.

引证文献9

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部