期刊文献+

基于遗传模拟退火算法的改进K-medoids算法 被引量:9

Improved K-medoids algorithm based on genetic simulated annealing algorithm
下载PDF
导出
摘要 针对标准K-medoids算法在大数据聚类应用中易陷入局部最优解以及聚类效果受初始中心限制的缺点,提出了基于遗传模拟退火算法的K-medoids改进算法。该算法结合遗传算法和模拟退火算法,可以增强标准K-medoids算法在聚类时的全局搜索能力,并加快其收敛速度。对比实验证明:这一改进有效地弥补了标准K-medoids算法的上述缺陷,达到了提高聚类效率、加快收敛速度、改善聚类质量的目的。 Standard K-medoids algorithm has the disadvantages of easy-to-fall into local optima and the clustering effect is commonly influenced by the initial cluster centre. To overcome these shortcomings,a modified K-medoids algorithm is proposed which is based on the genetic simulated annealing algorithm.By combing the genetic algorithm and the annealing algorithm,the global search ability and convergence speed of the proposed algorithm are greatly improved.Comparison experiment results show that the modified algorithm can effectively overcome the shortcomings of the Standard Kmedoids algorithm that the clustering efficiency,convergence speed and clustering quality are improved.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第2期619-623,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(60973041)
关键词 计算机应用 聚类 K-medoids算法 遗传模拟退火算法 computer application clustering K-medoids algorithm genetic simulated annealing algorithm
  • 相关文献

参考文献8

二级参考文献74

  • 1彭京,唐常杰,李川,陈安龙,胡建军.一种基于UD-Tree的分布式数据库新型复制架构[J].小型微型计算机系统,2004,25(12):2065-2069. 被引量:5
  • 2范瑜,金荣洪,耿军平,刘波.基于差分进化算法和遗传算法的混合优化算法及其在阵列天线方向图综合中的应用[J].电子学报,2004,32(12):1997-2000. 被引量:44
  • 3彭京,唐常杰,胡建军,陈安龙,李川.DIRM:基于动态信息路由的数据检索模型[J].四川大学学报(工程科学版),2005,37(1):108-115. 被引量:9
  • 4李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 5Holland J H. Building blocks, cohort genetic algorithms, and hyperplane-defined functions. Evolutionary Computation, 2000, 8(4): 373- 391.
  • 6Wang L, Maciejewski A A, Siegel H J. A comparative study of five parallel genetic algorithms using the traveling salesman problern//Proceedings of the 1st Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Processing. Los Alamitos, CA. 1998. 345-349.
  • 7刘顺忠.统计理论与应用.武汉:华中科技大学出版社,2005.
  • 8HAN Jia-wei,KAMBER M.数据挖掘概念与技术[M].2版.北京:机械工业出版社,2008:263-266.
  • 9CHEN Xin-quan,PENG Hong,HU Jing-song.K-medoids substitution clustering method and a new clustering validity index method[C] //Proc of the 6th World Congress on Intelligent Control and Automation.2006:5896-5900.
  • 10HE Zeng-you.Farthest-point heuristic based initialization methods for K-modes clustering[EB/OL].(2006-10-10).http://arxiv.org/ftp/cs/papers/0610/0610043.pdf.

共引文献1248

同被引文献103

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部