期刊文献+

一种快速均值飘移图像分割算法 被引量:5

Fast Mean Shift for Image Segmentation
下载PDF
导出
摘要 图像分割是图像分析及图像理解的关键步骤。与其他图像分割算法相比,均值漂移(Mean Shift)算法具有原理简单、无需先验知识、可以处理灰度图像及复杂的自然彩色图像等优点。但该算法需要对图像中每个像素点进行迭代计算,因此分割所需要的时间较长。本文提出了一种快速Mean Shift图像分割算法(Fast mean shift,FMS),将少量像素点作为初始点进行迭代计算,而出现在高维球区域内的其他像素点根据其到已有类中心的距离进行归类,从而减少Mean Shift算法的迭代次数,缩短分割时间。实验结果表明,本文提出的快速Mean Shift图像分割算法可以获得良好的分割结果且具有较高的分割效率。 Image segmentation is a key step in image analysis and image understanding.Compared with other image segmentation algorithms,mean shift algorithm has some advantages such as simple principle,dispensing with a priori knowledge,capability of dealing with gray images and complex natural color images,etc.However,the algorithm requires iterative calculations for each pixel in the image,and segmentation computational cost is high for practical tasks.Therefore,a fast mean shift(FMS)method for image segmentation is proposed,in which a small amount of pixels are selected as an initial point for iterative calculation,and other pixels are mergered to the existing classes according to the distance between the pixel and the class centers.As a result,the proposed FMS method reduces the iteration numbers of mean shift algorithm,and boosts the segmentation efficiency.Experimental results show that the proposed FMS method can obtain good segmentation results and higher segmentation efficiency.
出处 《数据采集与处理》 CSCD 北大核心 2015年第1期192-201,共10页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61273291)资助项目 山西省回国留学人员科研(2012-008)资助项目 山西省科技攻关计划(20120321027-01)资助项目
关键词 图像分割 均值飘移 聚类 归并 image segmentation mean shift clustering merging
  • 相关文献

参考文献17

二级参考文献150

共引文献277

同被引文献31

  • 1孙炀,罗瑜,周昌乐,许家佗,张志枫.一种基于分裂-合并方法的中医舌像区域分割算法及其实现[J].中国图象图形学报(A辑),2003,8(12):1395-1399. 被引量:34
  • 2陆剑锋,林海,潘志庚.自适应区域生长算法在医学图像分割中的应用[J].计算机辅助设计与图形学学报,2005,17(10):2168-2173. 被引量:69
  • 3刘晨,张东.边缘检测算子研究及其在医学图像中的应用[J].计算机技术与发展,2006,16(8):128-130. 被引量:14
  • 4Kurban T, Civicioglu P, Kurban R, et al. Comparison of evolutionary and swarm based computational techniques for multi- level color image thresholding [J]. Applied Soft Computing, 2014, 23: 128-143.
  • 5Bhandari A K, Singh V K, Kumar A, et al. Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy [J]. Expert Systems with Applications, 2014, 41 (7): 3538-3560.
  • 6Portes de A M, Esquef I A, Gesualdi M A R, et al. Image thresholding using Tsallis entropy [J]. Pattern Recognition Let- ters, 2004, 25(9): 1059-1106.
  • 7Sahoo P K, Arora G. Image thresholding using two-dimensional Tsallis-Havrda-Charval entropy [J]. Pattern Recognition Letters, 2006, 27(6): 520-528.
  • 8Sathya P D, Kayalvizhi R. Optimum multilevel image thresholding based on Tsallis entropy method with bacterial foraging algorithm [J]. International Journal of Computer Science Issues, 2010, 7(5): 336-343.
  • 9Agrawal S, Panda R, Bhuyan S, et al. Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm [J]. Swarm and Evolutionary Computation, 2011, 11(8): 16-30.
  • 10Storn R, Price K. Differential evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces [R]. Chennai: Institute of Company Secretaries of India, 1995.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部