期刊文献+

考虑道路通行能力的应急避难点选址模型及算法 被引量:9

The Location Models and Algorithms for Emergency Shelter with Traffic Capacity Constraint
原文传递
导出
摘要 在k-中心点问题的基础上,考虑道路的通行能力限制,提出了k-避难点问题。在一般树图结构下,重点分析了1-避难点选址问题,并设计了有效的求解算法;在直线图结构下,首先改进了一般图1-避难点的求解算法,其次分析了2-避难点问题的特点,并给出了一个基于"二分思想"的求解算法,在此基础上,为一般的直线图k-避难点问题设计了求解算法,一般算法的时间复杂性为O(nlogkn)。所提出的模型在理论上扩展了经典的k-中心点选址问题,所设计的求解算法能够为现实的应急管理规划提供良好的理论支持。 Taking into account the capacity constraint of road,the k-shelter problem is proposed based on the k-center problem.The problem for the case of k = 1on the general tree graph is analyzed and one strategy searching the optimal location for the shelter is designed.On the line graph,the strategy for the case of k=1is firstly improved and then the properties for the cases of k=2and k2are analyzed,respectively.According to these properties,a kind of binary search algorithms whose time complexity equals O(nlogkn)is proposed for the general case of kon the line graph.The proposed model extends the classical k-center problem,and the designed algorithms are contributed to the practice of emergency management.
出处 《中国管理科学》 CSSCI 北大核心 2015年第1期82-89,共8页 Chinese Journal of Management Science
基金 中国博士后科学基金资助项目(2013M530404) 国家自然科学基金资助项目(71371129 71172197) 长江学者和创新团队发展计划(IRT1173)
关键词 应急管理 k-避难点 K-中心点 通行能力 emergency management k-shelter k-center traffic capacity constraint
  • 相关文献

参考文献25

  • 1Kariv O, Hakimi S L. An algorithmic approach to net- work location problems (1) : The p-centers [J]. SIAM Journal on Applied Mathematics, 1979, 37 (3) : 513-- 538.
  • 2Hsu W L, Nemhauser G L. Easy and hard bottleneck location problems [J]. Discrete Applied Mathematics, 1979, 1(3): 209--215.
  • 3Hochbaum D S, Shmoys D B. A best possible approxi- mation algorithm for the k-center problem [J]. Mathe- matics of Operations Research, 1985, 10(2):180--184.
  • 4Chen R, Handler G Y. Relaxation method for the solu- tion of the mini-max location-allocation problem in Eu- clidean space [J]. Naval Research Logistics, 1987, 34 (6) :775--788.
  • 5Averbakh I, Berman O. Algorithms for the robust 1- center problem on a tree [J]. European Journal of Oper- ational Research, 2000, 123(2) :292--302.
  • 6Handler G Y, Mirchandani P B. Location on networks: Theory and algorithms [M]. Cambridge, MA: MIT Press, 1979.
  • 7Frank H. Optimum locations on a graph with probabilis- tic demands [J]. Operations Research, 1966, 14(3):409 --421.
  • 8Frank H. Optimum locations on a graph with correlated normal demands [J]. Operations Research, 1967, 15 (3) :552--557.
  • 9Wesolowsky G O. Probabilistic weights in the one-di- mensional facility location problem [J]. Management Science, 1977, 24(2) :224--229.
  • 10Bhatia R, Guha S, Khuller S, et al. Facility location with. dynamic distance functions [J]. Journal of Combi- natorial Optimization, 1998, 2(3) :199--217.

二级参考文献187

  • 1代颖,马祖军,刘飞.再制造闭环物流网络优化设计模型[J].中国机械工程,2006,17(8):809-814. 被引量:26
  • 2Wee, H.M.. Economic production lot size model for deteriorating items with partial back-ordering [J]. Computers and Industrial Engineering, 1993, 24 (3) : 449 - 458.
  • 3Goyal, S.k. , Giri, B. C.. Research trends in modeling of deteriorating inventory [J]. European Journal of Operational Research, 2001, 134: 1-16.
  • 4Ishii, H. , Nose, T.. Perishable inventory control with two types of customers and different selling prices under warehouse capacity constraint [J]. International Journal of Production Economics, 1996, 44(1-2): 167-176.
  • 5Chen, H. K. , Hsueh, C.F.. Production scheduling and vehicle routing with time windows for perishable food products [J]. Computer and Operations Research, 2009, 36(7) : 2311-2319.
  • 6Dave, U. , Patel, L. K.. (T, Si) policy inventory model for deteriorating items with time proportional demand [J]. Journal of Operation Research Society, 1981, 32: 137-142.
  • 7Perry, D. , Stadje, W.. Inventory systems for goods with censored random lifetimes [J]. Operations Research Letters, 2000, 27(1):21-27.
  • 8Nahmias, S., Perry, D., Stadje, W.. Perishable inventory systems with variable input and demand rates [J]. Math Operation Research, 2004,60:155-162.
  • 9Wee, H. M., Law, S. T.. Economic production lot size for deteriorating items taking account of the time value of money [J]. Computer and Operations Research, 1999, 26(6): 545-558.
  • 10Chang, C. T.. An EOQ model with deteriorating items under inflation when supplier credits linked to order quantity [J]. International Journal of Production Economics, 2004, 88(3): 307-316.

共引文献138

同被引文献64

引证文献9

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部