期刊文献+

基于领域知识和聚类的关联规则深层知识发现研究 被引量:18

Research on Algorithm of Post-processing Association Rules Based on Clustering and Domain Knowledge
原文传递
导出
摘要 本文针对传统关联规则挖掘算法产生大量冗余规则,提出了对关联规则结果进行二次挖掘,并设计了算法对挖掘出的关联规则进行聚类,然后基于已有领域知识对聚类后的关联规则进行新颖度评价,对于新颖度较高价值较大的关联规则可以存储于领域知识库用于决策使用或再次挖掘过程。该算法有效的减少的规则的数量,提高了规则的新颖性和精确度,对商业应用具有很高的价值。文章最后使用UCI开源数据进行了实验分析,并验证了该算法的有效性。 Second mining of the result of association rule mining is proposed in solution of the large numbers of redundant rules in the traditional association rules mining algorithm,and the algorithm for clustering of association rules is designed,then the novelty of the association rules is assessed after clustering based on the existing domain knowledge.It is insited that the association rules with more novelty and higher value can be stored in the domain knowledge base,and can be used for the decision or mining again.The algorithm proposed in this paper is effective to reduce the number of rules and also help to improve the novelty and precision of rule,which has a very high value for business applications.Finally the open source data from UCI is used to carry on the experiment to verify the effectiveness of the algorithm.
出处 《中国管理科学》 CSSCI 北大核心 2015年第2期154-161,共8页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(71471169 71071151)
关键词 关联规则 聚类 领域知识 深层知识发现 association rule clustering domain knowledge post-processing
  • 相关文献

参考文献6

二级参考文献36

  • 1A. Savasere, E. Omiecinski, S. Navathe, An efficient algorithm for mining association rules in large databases [ C ]. Zurich : Proceedings of 21 th VLDB Conference, 1995:432 - 444.
  • 2Jiawei Han Micheline Kamber.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 3Boykin S, Merlino A. Machine learning of event segmentation for news on demand[J]. Communications of the ACM, 2000,43(2):35-41.
  • 4Luhn H P. A statistical approach to mechanized encoding and searching of literary information[J]. IBM Journal, 1957,10(1):309-317.
  • 5Edmundson H. New methods in automatic extracting[J]. Journal of the ACM, 1969,16(2):264-285.
  • 6Salton G, James A, Buckley C. Automatic analysis, theme generation, and summarization of machine-readable texts[J]. Science, 1994,264(3):1421-1426.
  • 7Lehnert W, Loiselle C. An introduction to plot unit[A]. Semantic Structures-Advances in Natural Language Processing[C]. Hillsdale: Lawrence Erlbaum Associates, 1989.88-111.
  • 8Hearst A. Context and structure in automated full-text information access[D]. Berkeley:University of California, 1994.103-105.
  • 9Peter W F. Latent semantic analysis for text-based research, behavior research methods[J]. Instruments and Computers, 1996,28(2):197-202.
  • 10Fabrizio S. Machine learning in automated text categorization[J]. ACM Computing Surveys, 2002,34(1):1-47.

共引文献71

同被引文献333

引证文献18

二级引证文献205

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部