期刊文献+

改进的基于非高斯双参数模型的图像滤波算法

An Improved Image Filtering Algorithm Based on Non-Gaussian Bivariate Models
下载PDF
导出
摘要 以描述小波系数分布规律的非高斯双参数模型为基础,介绍和分析了BiShrink滤波算法,指出了其存在的不足。提出的改进算法采用冗余小波变换替代正交小波变换,将子带内小波系数的局部相关性纳入滤波过程,给出了局部自适应的阈值估计策略,再通过双参数联合收缩函数达到系数收缩的目的。实验结果表明,改进算法同时兼顾了子带内小波系数之间的相关性和尺度间系数的传播特性,在有效滤除噪声的同时,较好地保持了图像的细节信息。 The paper presented an analysis of the BiShrink filtering algorithm based on the Non-Gaussian Bivariate M odels,and pointed out its disadvantages. It proposed an improved method,which adopted Redundant Wavelet transform instead of Orthogonal Wavelet transform,and brought the relativity among wavelet coefficients in the sub-band into the filtering procedure,then calculated the local self-adaption threshold based on a neighboring window,and finally acquired the estimated coefficient by the associated shrinkage function. The experimental results show ed that the new method gave consideration to the relativity among the wavelet coefficients and the transform characteristics of the inter-scale coefficients,which filtered the noise effectively and preserved the detail information of imagery.
机构地区 [ [
出处 《海洋测绘》 CSCD 2015年第1期38-40,共3页 Hydrographic Surveying and Charting
基金 国家自然科学基金(60778051)
关键词 图像滤波 非高斯双参数模型 BiShrink算法 冗余小波变换 收缩函数 image filtering Non-Gaussian bivariate model BiShrink algorithm redundant wavelet transform shrinkage function
  • 相关文献

参考文献9

二级参考文献88

  • 1冯志林,尹建伟,刘洋,李旭东,董金祥.Allen-Cahn水平集的提花织物图像去噪研究[J].浙江大学学报(工学版),2005,39(2):185-189. 被引量:2
  • 2侯建华,熊承义,田晓梅.广义高斯分布及其在图像去噪中的应用[J].中南民族大学学报(自然科学版),2005,24(3):44-47. 被引量:12
  • 3侯建华,田金文.基于贝叶斯最大后验估计的局部自适应小波去噪[J].计算机工程,2006,32(11):13-15. 被引量:13
  • 4汪太月,李志明.一种广义高斯分布的参数快速估计法[J].工程地球物理学报,2006,3(3):172-176. 被引量:38
  • 5Simoncelli E P. Modeling the joint statistics of images in the wavelet domain[J]. Proc SPIE (44th Annual Meeting), 1999, 3813:188 ~195
  • 6Antoniadis A, Bigot J, Sapatinas T. Wavelet estima-tors in nonparametric regression: a comparative simulation study [J]. Journal of Statistical Software, 2001, 6(6) : 1~83
  • 7Mallat S. A theory for multiresolution signal decom-position : the wavelet representation [J]. IEEE Trans Pattern Analysis and Machine Intelligence,1989, 11(7):674~693
  • 8Simoncelli E P, Adelson E. Noise removal via Baye-sian wavelet coring [J]. Proceedings of the IEEE International Conference on Image Processing (ICIP),1996,1:379~382
  • 9Moulin P, Liu J. Analysis of multiresolution image denoising schemes using Generalized-Gaussian and complexity priors[J]. IEEE Trans Information Theory,1999,45 (3):909~919
  • 10Chang S G,Yu B, Vetterli M.Adaptive wavelet thres-holding for image denoising and compression[J].IEEE Trans Image Processing,2000,9(9):1 532~1 546

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部