期刊文献+

参数不确定离散随机系统的加权多模型自适应控制 被引量:7

Weighted Multiple Model Adaptive Control of Discrete-time Stochastic System with Uncertain Parameters
下载PDF
导出
摘要 研究离散时间参数不确定的线性随机系统的加权多模型自适应控制(Weighted multiple model adaptive control,WMMAC)问题,采用一种改进的加权算法,在模型输出误差可分的情况下,可以保证其收敛性;然后在加权收敛的前提下,借助虚拟等价系统的概念和方法证明了此类加权多模型自适应控制系统的稳定性和收敛性.本文所采用的分析方法和结论不依赖于局部控制策略和加权算法的具体形式,而只取决于它们的某些属性.最后,基于Matlab对相应的加权多模型自适应控制系统进行了仿真,仿真结果验证了加权算法的收敛性和闭环控制系统的稳定性、收敛性. This paper is concerned with the weighted multiple model adaptive control(WMMAC) of discrete-time linear stochastic system with uncertain parameters. Firstly, an improved weighting algorithm is adopted with convergence guaranteed under smooth conditions. Then based on virtual equivalent system methodology, the stability of resulting WMMAC systems for both linear time-invariant(LTI) and parameter jump plants is presented. The analysis method is independent of specific local control strategy and specific weighting algorithm. Finally, the theoretical results have been verified by simulation results using Matlab.
作者 张维存
出处 《自动化学报》 EI CSCD 北大核心 2015年第3期541-550,共10页 Acta Automatica Sinica
基金 国家重点基础研究发展计划(973计划)(2012CB821200) 国家高技术研究发展计划(863计划)(2011AA060408)资助~~
关键词 加权算法 加权多模型自适应控制 稳定性 收敛性 虚拟等价系统 Weighting algorithm weighted multiple model adaptive control(WMMAC) stability convergence virtual equivalent system
  • 相关文献

参考文献33

  • 1Narendra K S, Han Z. The changing face of adaptive con- trol: the use of multiple models. Annual Reviews in Control, 2011, 35(1): 1-12.
  • 2Magill D T. Optimal adaptive estimation of sampled stochastic processes. IEEE Transactions on Automatic Con- trol, 1965, 10(4): 434-439.
  • 3Lainiotis D G. Partitioning: a unifying framework for adap- tive systems -- I: Estimation. Proceedings of the IEEE, 1976, 64(8): 1126--1143.
  • 4Lainiotis D C. Partitioning: a unifying framework for adap- tive systems -- II: Control. Proceedings of the IEEE, 1976, 64(8): 1182-1198.
  • 5Athans M, Castanon D, Dunn K, Greene C, Lee W, Sandell N Jr, Willsky A S. The stochastic control of the F-SC aircraft using a multiple model adaptive control (MMAC) method -- Part I: Equilibrium flight. IEEE Transactions on Automatic Control, 1977, 22(5): 768-780.
  • 6Lane D W, Maybeck P S. Multiple model adaptive estima- tion applied to the Lambda URV for failure detection and identification. In: Proceedings of the 33rd IEEE Conference on Decision and Control. Lake Buena Vista, FL: IEEE 1994. 678-683.
  • 7Yu C, Roy R J, Kaufman H, Bequette B W. Multiple-model adaptive predictive control of mean arterial pressure and cardiac output. IEEE Transactions on Biomedical Engineer- ing, 1992, 89(8): 765-778.
  • 8Moose R L, Vanlandingham H F, McCabe D H. Model- ing and estimation for tracking maneuvering targets. 1EEE Transactions on Aerospace and Electronic Systems, 1979, 15(3): 448-456.
  • 9Li X R, Bar-Shalom Y. Design of an interacting multi- ple model algorithm for air traffic control tracking. IEEE Transactions on Control Systems Technology, 1993, 1(3): 186-194.
  • 10Badr A, Binder Z, Rey D. Application of tracking multi- model control to a non-linear thermal process. International Journal of Systems Science, 1990, 21(9): 1795-1803.

二级参考文献5

  • 1席裕庚,王凡.非线性系统预测控制的多模型方法[J].自动化学报,1996,22(4):456-461. 被引量:61
  • 2赵志魁,1977全球华人智能控制与智能自动化论文集,1997年,197页
  • 3Li X R,IEEE Trans AC,1996年,41卷,4期,703页
  • 4张戎军,控制与决策,1994年,9卷,5期,360页
  • 5He W G,IEEE Trans BME,1987年,34卷,8期,567页

共引文献4

同被引文献75

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部