期刊文献+

压缩感知中的投影矩阵优化算法 被引量:2

Algorithm of Optimization for Projection Matrix in Compressive Sensing
下载PDF
导出
摘要 压缩感知理论中感知矩阵的约束等距性或累积互相关性对于信号重建有着重要意义。降低感知矩阵的累积互相关性或平均互相关性,能有效地提高信号重建表现。基于这个结论,文中提出了一种在给定稀疏表示矩阵的条件下,对投影矩阵进行迭代优化的方法。仿真结果表明,文中提出的优化方法能够很大程度上降低感知矩阵的累积互相关性和平均互相关性。同时实验进一步表明,文中提出的投影矩阵迭代优化方法明显提高了压缩感知正交匹配追踪算法的重建表现。 In compressive sensing theory,the restricted isometry property or cumulative mutual coherence plays an important role in signal reconstruction. Reducing the cumulative mutual coherence and the average mutual coherence of the sensing matrix can improve the reconstruction performance. Based on this conclusion,propose a novel iterative algorithm of optimization for projection matrix when the sparsity transformation matrix is deterministic. Simulation results show that the cumulative mutual coherence and the average mutual coherence of the obtained sensing matrix is reduced largely via the new algorithm. And the experiments also show that the new method proposed improves the reconstruction performance of OM P algorithm compared with optimizing before significantly.
出处 《计算机技术与发展》 2015年第3期95-98,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(60972041 60972045)
关键词 压缩感知 互相关性 投影优化 信号重建 compressive sensing cumulative mutual coherence projection optimization signal reconstruction
  • 相关文献

参考文献7

二级参考文献242

  • 1宋莹华,宋建社,薛文通,袁礼海.SAR图像压缩技术的发展与现状[J].计算机应用研究,2005,22(4):6-8. 被引量:10
  • 2聂剑萍,吴乐南.基于DCT的SAR图像实时压缩[J].南昌大学学报(工科版),2005,27(1):68-71. 被引量:3
  • 3张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 4[5]Stephane Mallat.信号处理的小波导引[M].杨力华,等译.北京:机械工业出版社,2003.
  • 5[1]EJ Candes. Ridgelets:Theory and Applications[D].USA:Department of Statistics, Stanford University, 1998.
  • 6[2]E J Candes. Monoscale Ridgelets for the Representation of Images with Edges[ R]. USA: Department of Statistics, Stanford University, 1999.
  • 7[3]Candes E J, D L Donoho. Curvelets[R]. USA: Department of Statistics,Stanford University, 1999.
  • 8[4]E L Pennec, S Mallat. Image compression with geometrical wavelets[A]. In Proc. of ICIP' 2000 [ C ]. Vancouver, Canada, September,2000.661-664.
  • 9[5]M N Do, M Vetterli. Contourlets[ A ] .J Stoeckler, G V Welland. Beyond Wavelets [ C ]. Academic Press, 2002.
  • 10[7]D L Donoho,M Vetterli,R A DeVore, I Daubechies. Data compression and harmonic analysis [ J ]. IEEE Trans, 1998, Information Theory-44(6) :2435 - 2476.

共引文献723

同被引文献8

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部