期刊文献+

基于多级维纳滤波器的树型WSN分布式线性约束最小方差波束形成方法 被引量:2

Multistage Wiener Filter Based Distributed LCMV Beamforming Method in Tree Topology WSN
下载PDF
导出
摘要 为减少树型无线传感器网络(Wireless sensor network,WSN)中分布式线性约束最小方差(Linearly constrained minimum variance,LCMV)波束形成器的计算量,将多级分解技术用于WSN分布式波束形成技术中,提出基于多级维纳滤波器(Multistage Wiener filter,MSWF)的分布式LCMV波束形成器方法。该方法通过有效引入MSWF技术避免本地协方差矩阵估计及求逆运算,能以更少的计算量获得分布式LCMV波束形成器相同的输出性能,说明新方法继承了MSWF和分布式LCMV波束形成器的优点。计算机仿真结果验证了算法的优良性能。 To reduce the calculation of distributed linearly constrained minimum variance (D-LCMV) beamforming in tree topology wireless sensor network (WSN), a multistage Wiener filter (MSWF) based D-LCMV beamforming method is proposed by introducing a multistage decomposition techniques. By effectively applying the MSWF technology to the new method, the estimation and the inversion of lo- cal covariance matrix are avoided. The new method can reach the same output performance as that of the D-LCMV beamformer with less amount of calculation. Therefore it is shown that the new method inher- its advantages of both MSWF and D-LCMV beamformer. Simulation results prove that the new method achieves excellent performance.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第1期52-58,共7页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(61301091 61271276)资助项目 陕西省教育厅课题(11JK0929)资助项目
关键词 无线传感器网络 LCMV波束形成器 多级维纳滤波器 分布式信号估计 wireless sensor network (WSN) linearly constrained minimum variance (LCMV) beam-former multistage Wiener filter (MSWF) distributed signal estimation(DSE)
  • 相关文献

参考文献19

  • 1Fang J, Li H. Optimal/near-optimal dimensionality reduction for distributed estimation in homogeneous and.certain inhomogeneous scenarios [J]. IEEE Transactions on Signal Processing, 2010, 58 (8): 4339-4353.
  • 2Bertrand A, Moonen M. Seeing the bigger picture: How nodes can learn their place within a complex ad hoc network topology I-J]. IEEE Signal ProcessingMagazine, 2013, 30(3) : 71-82.
  • 3Bertrand A, Moonen M. Distributed computation of the Fiedler vector with application to topology infer ence in ad hoc networks [J]. Signal Processing, 2013, 93(5): 1106-1117.
  • 4Salman N, Ghogho M, Kemp A H. Optimized low complexity sensor node positioning in wireless sensor networks [J]. IEEE Sensors Journal, 2014, 14(1): 39-46.
  • 5Bejar Haro B, Zazo S, Palomar D P. Energy efficient collaborative beamforming in wireless sensor net- works[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 496-510.
  • 6Cattivelli F S, Sayed A H. Diffusion LMS strategies for distributed estimation [J]. IEEE Transactions on Signal Processing, 2010, 58(5) :1035-1048.
  • 7Bertrand A, Moonen M, Sayed A H. Diffusion bias- compensated RLS estimation over adaptive networks [J]. IEEE Transactions on Signal Processing, 2011, 59(11) : 5212-5224.
  • 8Bertrand A, Moonen M. Consensus-based distributed total least squaresestimation in ad hoe wireless sensor networks[J]. IEEE Transactions on Signal Process- ing, 2011, 59(5): 2320-2330.
  • 9Bertrand A, Moonen M. Distributed adaptive node specific signal estimation in fully connected sensor networks-Part I: Sequential node updating ]-J: IEEE Transactions on Signal Processing, 2010, 58 (10) : 5277-5291.
  • 10Bertrand A, Szurley J, Ruckebusch P, et al. Effi- cient calculation of sensor utility and sensor removal in wireless sensor networks for adaptive signal esti mation and beamforming I-J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5857-5869.

二级参考文献10

共引文献23

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部