期刊文献+

基于蝙蝠算法优化ELM的模拟电路故障诊断研究 被引量:28

Research for analog circuit fault diagnosis based on ELM optimized by bat algorithm
下载PDF
导出
摘要 极限学习机(extreme learning machine,ELM)具有学习速度快、测试精度高的优点。近年来被广泛用于模式识别和故障诊断等领域,但是ELM固有的随机性对其泛化性能和精度有很大的影响。蝙蝠算法(bat algorithm,BA)是一种新型的智能优化算法,具有良好的全局搜索能力。将蝙蝠算法引入到极限学习机输入权值和阈值的优化中,有机结合2种算法的优点,建立了基于蝙蝠算法优化极限学习机的故障模型,以带通滤波器作为测试电路,并和ELM、DE-ELM、SAE-ELM进行对比,仿真和实验结果表明蝙蝠算法有效地改善了ELM网络的诊断精度和泛化能力。 In recent years,Extreme learning machine is widely used in the fields of pattern recognition and fault diagnosis etc.because of quick learning speed and high testing accuracy,but randomization of extreme learning machine may lead to non-optimal performance.Therefore,bat algorithm,which has the features of global convergence,is introduced in the parameter optimization of extreme learning machine.A parameter optimization model based bat algorithm is established in order to combine the advantages of the algorithms,applied in bandpass filter analog circuit fault diagnosis,and compared with the ELM,DE-ELM,SAE-ELM.Simulation show that ELM improved by BA can achieve good generalization performance and robustness.
出处 《电子测量技术》 2015年第2期138-141,共4页 Electronic Measurement Technology
关键词 极限学习机 蝙蝠算法 故障诊断 模拟电路 extreme learning machine bat algorithm fault diagnosis analog circuit
  • 相关文献

参考文献10

  • 1HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications [J]. Neurocomputing, 2006, 70 ( 1/3) : 489-501.
  • 2CAO J W, LIN Z P. Huang G-B (2011) Composite function wavelet neural networks with differential evolution and extreme learning machine. Neural Process Lett 33(3):251-265.
  • 3CAO J W, LIN Z P, HUANG G B. Self-Adaptive evolutionary extreme learning machine[J]. Neural Process Lett (2012) 36:285-305.
  • 4周江嫚,黄清秀,彭敏放,杨超,董娜.基于差分进化优化ELM的模拟电路故障诊断[J].计算机工程与应用,2014,50(8):221-225. 被引量:13
  • 5YANG X SH, AMIR H. Gand, Bat algorithm: A novel approach for global engineering optimization [J ]. Engineering Computations, 2012, 29 ( 5 ): 464-483.
  • 6RONKKONEN J, KUKKONEN S, Price KV (2005) Real-parameter optimization with differential evolution. In: Proceedings of IEEE congress evolutionary computation, Edinburgh, Scotland: 506-513.
  • 7李煜,马良.新型全局优化蝙蝠算法[J].计算机科学,2013,40(9):225-229. 被引量:58
  • 8高斐,李洪儒,许葆华.基于ICPSO优化的极限学习机在故障诊断中的应用[J].中国机械工程,2013,24(20):2753-2757. 被引量:8
  • 9尹刚,张英堂,李志宁,任国全,孙宜权.自适应集成极限学习机在故障诊断中的应用[J].振动.测试与诊断,2013,33(5):897-901. 被引量:8
  • 10HUANG G B, DING X J, ZHOU H M. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems Man and Cybernetics-Part B: Cybernetics, 2012(2): 513- 529.

二级参考文献49

  • 1王启付,王战江,王书亭.一种动态改变惯性权重的粒子群优化算法[J].中国机械工程,2005,16(11):945-948. 被引量:80
  • 2Goldberg D.Genetic Algorithms in Search,Optimization andMachine Learning,Reading[M].Mass:Addison-Wesley,1989.
  • 3Dorigo M,Maniezzo V,Colorni A.The ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B,1996,26(1):29-41.
  • 4Kennedy J,Eberhart R.Particle swarm optimization[C]∥Proceedings of IEEE International Conference on Neural Networks.1995:1942-1948.
  • 5Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C]∥Proceedings of the 6th International Symposium on Micro-Machine and Human Seience.1995:39-43.
  • 6Formato R A.Central force optimization:a new metheuristicWith a applications in applied eletromagnetics[J].Progress in E-lectromagnetics Research,2007,7:425-491.
  • 7Shor P W.Algorithms for quantum computation:discrete logarithms and factoring[C]∥Proceedings of the 35th Annual Symp.on Foundations of Computer Science.New York,USA:IEEE Computer Society Press,1994,1:124-134.
  • 8Adleman L.Molecular computation of solutions to combinatorial problems[J].Science,1994,266(5187):1021-1024.
  • 9Teodorovic D.Dell'Orco M.Bee colony optimization-a coope-rative learning approach to complex transportation problems.Advanced OR and AI Methods in Transportation[C]∥10th EWGT Meeting and 16th Mini-EVRO Conference.2005:51-60.
  • 10Bersini H,Varela F.The immune recruitment mechanism:A selective evolutionary strategy[C]∥Proceedings of the 4th International Conference on Genetic Algorithms.1991:520-526.

共引文献81

同被引文献294

引证文献28

二级引证文献161

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部