期刊文献+

一种用于CTP版表面瑕疵的自适应检测算法 被引量:1

An Adaptive Detection Algorithm for Flaw on CTP Plate
下载PDF
导出
摘要 为了实现CTP版材表面不同类型瑕疵的自适应在线检测,引入人类视觉注意机制,融合区域生长算法对表面瑕疵图像进行分割,以面积作为特征值对瑕疵进行识别。首先根据人类视觉系统具有选择性注意机制的特性,对CTP版材表面图像的多特征图像采用图像金字塔分解得到多尺度图像,并利用基于图的算法(GBVS)将多尺度下多特征的图像融合为全局显著图。然后将显著图中最显著点即注意焦点作为区域生长的种子点,相似性作为区域生长准则,对原图像的梯度图像采用区域生长算法获得瑕疵区域二值化图像。最后利用注意抑制返回机制和邻近优先的准则,查找其他未检瑕疵,直至满足CTP版材的行业标准。实验结果表明:瑕疵检测系统分辨率0.1mm,检测平均准确率达96.3%以上,算法运行速度快,能满足CTP版材生产的在线检测实时性要求。 In order to realize automatic detection for flaw on CTP plate,an automatic detection system is established and its applied algorithms such as region growing and graph-based visual saliency(GBVS) is investigated.First,according to biological characteristics of the human visual attention mechanism,image elementary features were extracted by sampling the center-surround differences,which were combined into a saliency map.Then competition among salient points in this map gave rise to a single focus of attention(FOA) which was selected as the seed point of region growing segmentation.Taking similarity for region growing criteria,binary image of flaw region was formed.Finally,after computing characteristic parameters according to flaw region and using area features,flaw on CTP plate surface were identified.Experimental results indicate that intelligent detection of flaw on CTP plate achieves system resolution of0.1mm with average accuracy rate of 96.3%.It can satisfy the system requirements of non-contact,online,real time,higher precision,rapid speed and stabilization.
出处 《长春理工大学学报(自然科学版)》 2014年第6期94-98,共5页 Journal of Changchun University of Science and Technology(Natural Science Edition)
关键词 机器视觉 表面瑕疵 视觉注意 显著图 区域生长 machine vision surface flaw visual attention saliency map region growing
  • 相关文献

参考文献15

二级参考文献32

  • 1林晓春,李存志.一种基于图像融合的红外图像增强新方法[J].西安电子科技大学学报,2005,32(2):189-192. 被引量:11
  • 2孙晓丽,宋国乡,姜东焕.基于形态学的自适应扩散滤波方法[J].西安电子科技大学学报,2007,34(2):312-316. 被引量:2
  • 3朱斌,樊祥,马东辉,程正东.一种改进的自适应背景预测红外弱小目标检测算法[J].激光与红外,2007,37(7):683-686. 被引量:12
  • 4Denney B S, de Figueiredo R J P. Optimal Point Target Detection Using Adaptive Auto Regressive Background Prediction [J].Signal and Data Processing of Small Targets, SPIN, 2000(4048): 46-47.
  • 5Zhang Shijun, Jing Zhongliang, Li Jianxun. Small Target Detection of Infrared Image Based on Energy Features[J]. IEEE Neural Networks and Signal Processing, 2003(1) : 672-676.
  • 6Tomasi C, Manduchi R. Bilateral Filtering for Gray and Color Images[C]//Proc Sixth Int'l Conf Computer Vision 1998 (ICCV'98). Washington: IEEE Computer Society, 1998:839-846.
  • 7Kass M,Witkin A. Snakes:active conlour models[J]. Inlemafional Journal of Computer Vision, 1988, 1 (4) :321-331.
  • 8Osher S,Sethian J A. Fronls Propagaling wilh Cur- vature Dependenl Speed:Algorithms Based on Ham- ilton-Jacobi Fommlalions [J].Joumal of Computa- tional Physics, 1988,79 ( 1 ): 12-49.
  • 9Caselles V, More J M, Sapiro G. Geodesic aclive contours [J].Intemational Journal of Computer Vi- sion,1997,22 (1):61-79.
  • 10Malladi R,Setian J. A,Vemuri B. C. Shape model ing with front propagation: A level set approach IEEE Trans. on Pattern Analysis and Machine In- telligence, 1995, 17(2) : 158-175.

共引文献33

同被引文献21

  • 1ZHONG S, Z/-IANG Q, YAO L, et al. Fabric defect detec- tion using wavelet-enhanced single-point photoelectric sens- ing system [J]. Applied Mechanics and Materials, 2012, 162:497-504.
  • 2NGAN H YT, PANG G K H, YUNGN H C. Automated fabric defect detection-A review [ J ]. Image and Vision Computing, 2011,29:442 -458.
  • 3HARALICK R M, SHANMUGAM K, DINSTEIN I. Textural features for image classification [ J ]. IEEE Trans. Systems, Man and Cybernetics, 1973,3 (6) :610-621.
  • 4KASPARIS T, TZANNES N S, BASSIOUNI M, et al. Tex- ture description using fractal and energy features [ J ]. Com- puters & Electrical Engineering, 1995,21 ( 1 ) :21-32.
  • 5CHAN C H, PANG G K H. Fabric defect detection by Fou- rier analysis [ J ]. IEEE Trans. Industry Applications, 2000,36(5) : 1267-1276.
  • 6YANG X Z, PANG G K H, YUNG N H C. Discriminative fabric defect detection using adaptive wavelets [ J ]. Optical Engineering, 2002,41 ( 12 ) : 3116 -3126.
  • 7NAVARRO E R, MILLAN M S, PLADELLORENS J. De- tection of local defects in textile webs using Gabor filters [J]. Oi~tical Enaineerina. 1998.37 ( 8 ) :2297-2307.
  • 8SERAFIM A F L. Segmentation of Natural Images Based on Muhi-resolution Pyramids Linking of the Parameters of an Autoregressive Rotation Invmiant Model Application toLeather Defect Detection[ C]//Proc. IEEE llth IAPR Int' 1 Conf. Pattern Recognition. Conference C: Image, Speech & Signal Analysis. Hagne: Is. n. ] ,1992:41-44.
  • 9COHEN F S, FAN Z G, ATYALI S. Automated inspection of textile fabric using textural models [ J ]. IEEE Trans. Pattern Analysis & Machine Intelligence, 1991,13 ( 8 ) : 803 -808.
  • 10GONZALES R C, WOODS R E. Digital Image Processing, Second Edition[ M]. NJ: Pearson Education, Inc. ,2002.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部